Question Number 139655 by mohammad17 last updated on 30/Apr/21
Answered by qaz last updated on 30/Apr/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\mathrm{tan}^{−\mathrm{1}} \left({x}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{tan}^{−\mathrm{1}} \left({x}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right){d}\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{tan}^{−\mathrm{1}} \left({x}\right){d}\left[\left({x}^{\mathrm{2}} +\mathrm{1}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\pi}{\mathrm{4}}\left(\mathrm{2}{ln}\mathrm{2}−\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left[\left({x}^{\mathrm{2}} +\mathrm{1}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right]}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\pi}{\mathrm{2}}{ln}\frac{\mathrm{2}}{{e}}−\int_{\mathrm{0}} ^{\mathrm{1}} \left[{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{1}\right]{dx}\right\} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\frac{\mathrm{2}}{{e}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\mathrm{2}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dc}\right\} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\frac{\mathrm{2}}{{e}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\mathrm{1}−\frac{\pi}{\mathrm{4}} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\frac{\mathrm{2}}{{e}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2} \\ $$