Menu Close

Question-139696




Question Number 139696 by mnjuly1970 last updated on 30/Apr/21
Answered by Dwaipayan Shikari last updated on 30/Apr/21
ϑ(θ)=Σ_(n=1) ^∞ (((−1)^(n+1) sin(nθ))/(n ))  ϑ(θ)=(1/(2i))Σ_(n=1) ^∞ (((−1)^(n+1) e^(inθ) )/n)−(1/(2i))Σ_(n=1) ^∞ (((−1)^(n+1) e^(−inθ) )/n)  =(1/(2i))log(1+e^(iθ) )−(1/(2i))log(1+e^(−iθ) )=(1/(2i))log(((1+e^(iθ) )/(1+e^(−iθ) )))=(1/(2i))log(e^(iθ) )  =(θ/2)  ∫_0 ^θ ϑ(θ)dθ=∫_0 ^θ Σ_(n=1) ^∞ (((−1)^(n+1) sin(nθ))/n)dθ  ⇒(θ^2 /4)=−Σ_(n=1) ^∞ (((−1)^(n+1) cos(nθ))/n^2 )+(π^2 /(12))  Σ_(n=1) ^∞ (((−1)^(n+1) cos(nθ))/n^2 )=(π^2 /(12))−(θ^2 /4)
$$\vartheta\left(\theta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {sin}\left({n}\theta\right)}{{n}\:} \\ $$$$\vartheta\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{{in}\theta} }{{n}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−{in}\theta} }{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\mathrm{1}+{e}^{{i}\theta} \right)−\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\mathrm{1}+{e}^{−{i}\theta} \right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\frac{\mathrm{1}+{e}^{{i}\theta} }{\mathrm{1}+{e}^{−{i}\theta} }\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left({e}^{{i}\theta} \right) \\ $$$$=\frac{\theta}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\theta} \vartheta\left(\theta\right){d}\theta=\int_{\mathrm{0}} ^{\theta} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {sin}\left({n}\theta\right)}{{n}}{d}\theta \\ $$$$\Rightarrow\frac{\theta^{\mathrm{2}} }{\mathrm{4}}=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {cos}\left({n}\theta\right)}{{n}^{\mathrm{2}} }+\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {cos}\left({n}\theta\right)}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\theta^{\mathrm{2}} }{\mathrm{4}} \\ $$
Commented by mnjuly1970 last updated on 30/Apr/21
thanks alot mr payan...
$${thanks}\:{alot}\:{mr}\:{payan}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *