Menu Close

Question-139954




Question Number 139954 by Ar Brandon last updated on 02/May/21
Answered by mr W last updated on 03/May/21
x_(n+1) =((x_n −(1/( (√2)+1)))/(1+x_n ×(1/( (√2)+1))))  let tan A_n =x_n , tan B=(1/( (√2)+1))=(√2)−1 ⇒B=(π/8)  tan A_(n+1) =((tan A_n −tan B)/(1+tan A_n tan B))=tan (A_n −B)  ⇒A_(n+1) =A_n −B  → it′s A.P.   ⇒A_n =A_1 −(n−1)B  ⇒A_n =tan^(−1) x_1 −(n−1)(π/8)  ⇒A_n =tan^(−1) 2014−(((n−1)π)/8)  ⇒x_n =tan[tan^(−1) 2014−(((n−1)π)/8)]  ⇒x_n =((2014−tan (((n−1)π)/8))/(1+2014 tan (((n−1)π)/8)))  ⇒x_(2015) =((2014−tan ((2014π)/8))/(1+2014 tan ((2014π)/8)))  =((2014−tan (252π−(π/4)))/(1+2014 tan (252π−(π/4))))  =((2014+1)/(1−2014))=−((2015)/(2013))
$${x}_{{n}+\mathrm{1}} =\frac{{x}_{{n}} −\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}}{\mathrm{1}+{x}_{{n}} ×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}} \\ $$$${let}\:\mathrm{tan}\:{A}_{{n}} ={x}_{{n}} ,\:\mathrm{tan}\:{B}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}=\sqrt{\mathrm{2}}−\mathrm{1}\:\Rightarrow{B}=\frac{\pi}{\mathrm{8}} \\ $$$$\mathrm{tan}\:{A}_{{n}+\mathrm{1}} =\frac{\mathrm{tan}\:{A}_{{n}} −\mathrm{tan}\:{B}}{\mathrm{1}+\mathrm{tan}\:{A}_{{n}} \mathrm{tan}\:{B}}=\mathrm{tan}\:\left({A}_{{n}} −{B}\right) \\ $$$$\Rightarrow{A}_{{n}+\mathrm{1}} ={A}_{{n}} −{B}\:\:\rightarrow\:{it}'{s}\:{A}.{P}.\: \\ $$$$\Rightarrow{A}_{{n}} ={A}_{\mathrm{1}} −\left({n}−\mathrm{1}\right){B} \\ $$$$\Rightarrow{A}_{{n}} =\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{1}} −\left({n}−\mathrm{1}\right)\frac{\pi}{\mathrm{8}} \\ $$$$\Rightarrow{A}_{{n}} =\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{8}} \\ $$$$\Rightarrow{x}_{{n}} =\mathrm{tan}\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{8}}\right] \\ $$$$\Rightarrow{x}_{{n}} =\frac{\mathrm{2014}−\mathrm{tan}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{8}}}{\mathrm{1}+\mathrm{2014}\:\mathrm{tan}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{8}}} \\ $$$$\Rightarrow{x}_{\mathrm{2015}} =\frac{\mathrm{2014}−\mathrm{tan}\:\frac{\mathrm{2014}\pi}{\mathrm{8}}}{\mathrm{1}+\mathrm{2014}\:\mathrm{tan}\:\frac{\mathrm{2014}\pi}{\mathrm{8}}} \\ $$$$=\frac{\mathrm{2014}−\mathrm{tan}\:\left(\mathrm{252}\pi−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}+\mathrm{2014}\:\mathrm{tan}\:\left(\mathrm{252}\pi−\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\mathrm{2014}+\mathrm{1}}{\mathrm{1}−\mathrm{2014}}=−\frac{\mathrm{2015}}{\mathrm{2013}} \\ $$
Commented by Ar Brandon last updated on 04/May/21
Welldone Sir !
$$\mathrm{Welldone}\:\mathrm{Sir}\:! \\ $$
Answered by mr W last updated on 03/May/21
an other way:  let c=(√2)+1  x_(n+1) +A=((cx_n −1)/(c+x_n ))+A=(((A+c)x_n +Ac−1)/(c+x_n ))  x_(n+1) +B=((cx_n −1)/(c+x_n ))+B=(((B+c)x_n +Bc−1)/(c+x_n ))  ((x_(n+1) +A)/(x_(n+1) +B))=((A+c)/(B+c))×((x_n +((Ac−1)/(A+c)))/(x_n +((Bc−1)/(B+c))))  let ((Ac−1)/(A+c))=A  −1=A^2   A=i, ⇒B=−i  (or A=−i, ⇒B=i)    ((x_(n+1) +i)/(x_(n+1) −i))=((c+i)/(c−i))×((x_n +i)/(x_n −i))   →it′s G.P.  ⇒((x_n +i)/(x_n −i))=(((c+i)/(c−i)))^(n−1) ×((x_1 +i)/(x_1 −i))  e^((2 tan^(−1) (1/x_n ))i) =e^((2(n−1)tan^(−1) (1/c))i) e^(2(tan^(−1) (1/x_1 ))i)   ⇒tan^(−1) (1/x_n )=(n−1)tan^(−1) (1/c)+tan^(−1) (1/x_1 )  ⇒(π/2)−tan^(−1) x_n =(n−1)tan^(−1) (1/c)+(π/2)−tan^(−1) x_1   ⇒tan^(−1) x_n =tan^(−1) x_1 −(n−1)tan^(−1) (1/c)  ⇒tan^(−1) x_n =tan^(−1) 2014−(n−1)tan^(−1) ((√2)−1)  ⇒x_n =tan [tan^(−1) 2014−(n−1)tan^(−1) ((√2)−1)]  ⇒x_n =tan [tan^(−1) 2014−(((n−1)π)/8)]  ⇒x_(2015) =tan [tan^(−1) 2014−((2014π)/8)]  =tan [tan^(−1) 2014+(π/4)]  =((2014+tan((π/4)))/(1−2014 tan ((π/4))))  =((2014+1)/(1−2014))=−((2015)/(2013))
$${an}\:{other}\:{way}: \\ $$$${let}\:{c}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$$${x}_{{n}+\mathrm{1}} +{A}=\frac{{cx}_{{n}} −\mathrm{1}}{{c}+{x}_{{n}} }+{A}=\frac{\left({A}+{c}\right){x}_{{n}} +{Ac}−\mathrm{1}}{{c}+{x}_{{n}} } \\ $$$${x}_{{n}+\mathrm{1}} +{B}=\frac{{cx}_{{n}} −\mathrm{1}}{{c}+{x}_{{n}} }+{B}=\frac{\left({B}+{c}\right){x}_{{n}} +{Bc}−\mathrm{1}}{{c}+{x}_{{n}} } \\ $$$$\frac{{x}_{{n}+\mathrm{1}} +{A}}{{x}_{{n}+\mathrm{1}} +{B}}=\frac{{A}+{c}}{{B}+{c}}×\frac{{x}_{{n}} +\frac{{Ac}−\mathrm{1}}{{A}+{c}}}{{x}_{{n}} +\frac{{Bc}−\mathrm{1}}{{B}+{c}}} \\ $$$${let}\:\frac{{Ac}−\mathrm{1}}{{A}+{c}}={A} \\ $$$$−\mathrm{1}={A}^{\mathrm{2}} \\ $$$${A}={i},\:\Rightarrow{B}=−{i} \\ $$$$\left({or}\:{A}=−{i},\:\Rightarrow{B}={i}\right) \\ $$$$ \\ $$$$\frac{{x}_{{n}+\mathrm{1}} +{i}}{{x}_{{n}+\mathrm{1}} −{i}}=\frac{{c}+{i}}{{c}−{i}}×\frac{{x}_{{n}} +{i}}{{x}_{{n}} −{i}}\:\:\:\rightarrow{it}'{s}\:{G}.{P}. \\ $$$$\Rightarrow\frac{{x}_{{n}} +{i}}{{x}_{{n}} −{i}}=\left(\frac{{c}+{i}}{{c}−{i}}\right)^{{n}−\mathrm{1}} ×\frac{{x}_{\mathrm{1}} +{i}}{{x}_{\mathrm{1}} −{i}} \\ $$$${e}^{\left(\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}_{{n}} }\right){i}} ={e}^{\left(\mathrm{2}\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{c}}\right){i}} {e}^{\mathrm{2}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}_{\mathrm{1}} }\right){i}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}_{{n}} }=\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{c}}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}_{\mathrm{1}} } \\ $$$$\Rightarrow\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {x}_{{n}} =\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{c}}+\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} {x}_{{n}} =\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{1}} −\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{c}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} {x}_{{n}} =\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$\Rightarrow{x}_{{n}} =\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\left({n}−\mathrm{1}\right)\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\right] \\ $$$$\Rightarrow{x}_{{n}} =\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{8}}\right] \\ $$$$\Rightarrow{x}_{\mathrm{2015}} =\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}−\frac{\mathrm{2014}\pi}{\mathrm{8}}\right] \\ $$$$=\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{2014}+\frac{\pi}{\mathrm{4}}\right] \\ $$$$=\frac{\mathrm{2014}+\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}−\mathrm{2014}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\mathrm{2014}+\mathrm{1}}{\mathrm{1}−\mathrm{2014}}=−\frac{\mathrm{2015}}{\mathrm{2013}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *