Menu Close

Question-140053




Question Number 140053 by ajfour last updated on 03/May/21
Commented by ajfour last updated on 03/May/21
Find radius of largest sphere   within the cuboid and between  the shown triangular planes.
$${Find}\:{radius}\:{of}\:{largest}\:{sphere}\: \\ $$$${within}\:{the}\:{cuboid}\:{and}\:{between} \\ $$$${the}\:{shown}\:{triangular}\:{planes}. \\ $$
Commented by MJS_new last updated on 03/May/21
the planes are parallel ⇒ diameter of sphere =  = distance of planes
$$\mathrm{the}\:\mathrm{planes}\:\mathrm{are}\:\mathrm{parallel}\:\Rightarrow\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{sphere}\:= \\ $$$$=\:\mathrm{distance}\:\mathrm{of}\:\mathrm{planes} \\ $$
Commented by mr W last updated on 03/May/21
2R=(1/( (√((1/a^2 )+(1/b^2 )+(1/c^2 )))))  ⇒R=(1/( 2(√((1/a^2 )+(1/b^2 )+(1/c^2 )))))
$$\mathrm{2}{R}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *