Question Number 140148 by aliibrahim1 last updated on 04/May/21
Answered by EDWIN88 last updated on 04/May/21
$$\left(\ast\right)\mathrm{vol}\:=\:\pi\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{dy}\:=\:\pi\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}^{\mathrm{2}} \right)_{\mathrm{1}} ^{\mathrm{4}} =\:\frac{\mathrm{15}\pi}{\mathrm{2}} \\ $$$$\left(\ast\ast\right)\mathrm{vol}\:=\:\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\mathrm{x}.\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}\:=\:\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\mathrm{x}^{\mathrm{3}} \:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\pi\:\left(\mathrm{x}^{\mathrm{4}} \right)_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\mathrm{vol}=\:\frac{\mathrm{15}\pi}{\mathrm{2}} \\ $$
Commented by aliibrahim1 last updated on 04/May/21
$${thx}\:{sir}\:{appreciate}\:{it} \\ $$