Menu Close

Question-140294




Question Number 140294 by solihin last updated on 06/May/21
Answered by Satyendra last updated on 06/May/21
c) sin^(−1) y^2 =sinh(xy)  ⇒((2y)/( (√(1−y^4 )))) y′=cosh(xy) (y+xy′)  ⇒((2y)/( (√(1−y^4 )))) y′=ycosh(xy)+xy′cosh(xy)  ⇒((2y)/( (√(1−y^4 )))) y′−xy′cosh (xy)=ycosh (xy)  ⇒y′[((2y)/( (√(1−y^4 ))))−xcosh (xy)]=ycosh (xy)  ⇒y′=((ycosh (xy))/(((2y)/( (√(1−y^4 ))))−xcosh (xy)))  ⇒y′=((ycosh (xy)(√(1−y^4 )))/(2y−xcosh (xh)(√(1−y^4 ))))  ⇒(dy/dx)=((ycosh (xy)(√(1−y^4 )))/(2y−xcosh (xh)(√(1−y^4 ))))
c)sin1y2=sinh(xy)2y1y4y=cosh(xy)(y+xy)2y1y4y=ycosh(xy)+xycosh(xy)2y1y4yxycosh(xy)=ycosh(xy)y[2y1y4xcosh(xy)]=ycosh(xy)y=ycosh(xy)2y1y4xcosh(xy)y=ycosh(xy)1y42yxcosh(xh)1y4dydx=ycosh(xy)1y42yxcosh(xh)1y4
Answered by Satyendra last updated on 06/May/21
(a) y=(cos^(−1) 4x^2 )^5   ⇒(dy/dx)=(d/dx)(cos^(−1) 4x^2 )^5   ⇒(dy/dx)=5 (cos^(−1) 4x^2 )^4   (d/(dx ))(cos^(−1) 4x^2 )  ⇒(dy/dx)=5 (cos^(−1) 4x^2 )^4  (1/( −(√(1−(4x^2 )^2 )))) (d/dx)(4x^2 )  ⇒(dy/dx)=5 (cos^(−1) 4x^2 )^4  (1/(−(√(1−16x^(4 ) ))))  8x  ⇒(dy/dx)=−((40x(cos^(−1) 4x^2 )^4 )/( (√(1−16x^4 ))))
(a)y=(cos14x2)5dydx=ddx(cos14x2)5dydx=5(cos14x2)4ddx(cos14x2)dydx=5(cos14x2)411(4x2)2ddx(4x2)dydx=5(cos14x2)41116x48xdydx=40x(cos14x2)4116x4
Answered by liberty last updated on 06/May/21
(a) y=(cos^(−1) 4x^2 )^5   ⇒y^(1/5)  = cos^(−1) (4x^2 )  ⇒ 4x^2  = cos (y^(1/5) )  ⇒8x = (1/5)y^(−(4/5)) (−sin y^(1/5) ).(dy/dx)  ⇒(dy/dx) =− ((40x)/(y^(−(4/5)) (sin y^(1/5) )))  ⇒(dy/dx) = −40x csc (cos^(−1) (4x^2 )).(cos^(−1) (4x^2 ))^4
(a)y=(cos14x2)5y15=cos1(4x2)4x2=cos(y15)8x=15y45(siny15).dydxdydx=40xy45(siny15)dydx=40xcsc(cos1(4x2)).(cos1(4x2))4
Answered by qaz last updated on 06/May/21
≪c≫  ((2y)/( (√(1−y^2 ))))y′=cosh (xy)[y+xy′]=ycosh (xy)+xy′cosh (xy)  ⇒y′=((ycosh (xy))/(((2y)/( (√(1−y^2 ))))−xcosh (xy)))
c2y1y2y=cosh(xy)[y+xy]=ycosh(xy)+xycosh(xy)y=ycosh(xy)2y1y2xcosh(xy)

Leave a Reply

Your email address will not be published. Required fields are marked *