Menu Close

Question-140384




Question Number 140384 by Willson last updated on 07/May/21
Answered by benjo_mathlover last updated on 07/May/21
(2) lim_(x→0)  (((x^p +1)^n (x^q +1)^m −1)/x) =  lim_(x→0)  (((1+nx^p )(1+mx^q )−1)/x) =  lim_(x→0)  ((1+mx^q +nx^p +mnx^(p+q) −1)/x) =  lim_(x→0)  ((mx^q +nx^p +mnx^(p+q) )/x) =  lim_(x→0)  mx^(q−1) +nx^(p−1) +mnx^(p+q−1)  = 0
(2)limx0(xp+1)n(xq+1)m1x=limx0(1+nxp)(1+mxq)1x=limx01+mxq+nxp+mnxp+q1x=limx0mxq+nxp+mnxp+qx=limx0mxq1+nxp1+mnxp+q1=0

Leave a Reply

Your email address will not be published. Required fields are marked *