Menu Close

Question-140462




Question Number 140462 by ZiYangLee last updated on 08/May/21
Commented by mr W last updated on 08/May/21
T_n =ar^(n−1)   ((T_(n+4) −T_(n+2) )/T_(n+1) )=((ar^(n+3) −ar^(n+1) )/(ar^n ))=r^3 −r  =(r−1)r(r+1)  one of r and r+1 is even, so (r−1)r(r+1)  is always even.
$${T}_{{n}} ={ar}^{{n}−\mathrm{1}} \\ $$$$\frac{{T}_{{n}+\mathrm{4}} −{T}_{{n}+\mathrm{2}} }{{T}_{{n}+\mathrm{1}} }=\frac{{ar}^{{n}+\mathrm{3}} −{ar}^{{n}+\mathrm{1}} }{{ar}^{{n}} }={r}^{\mathrm{3}} −{r} \\ $$$$=\left({r}−\mathrm{1}\right){r}\left({r}+\mathrm{1}\right) \\ $$$${one}\:{of}\:{r}\:{and}\:{r}+\mathrm{1}\:{is}\:{even},\:{so}\:\left({r}−\mathrm{1}\right){r}\left({r}+\mathrm{1}\right) \\ $$$${is}\:{always}\:{even}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *