Question Number 140748 by 676597498 last updated on 12/May/21
Answered by qaz last updated on 12/May/21
$$\left({i}\right)…{r}=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{r}+{r}\mathrm{sin}\:\theta=\mathrm{2} \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{y}=\mathrm{2} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{4}{y}−\mathrm{4}=\mathrm{0} \\ $$$$−−−−−−−−−− \\ $$$$\left({ii}\right)…\left(\frac{\mathrm{4}}{\mathrm{3}},\frac{\pi}{\mathrm{6}}\right)\Rightarrow\left(\frac{\mathrm{4}}{\mathrm{3}}\mathrm{cos}\:\frac{\pi}{\mathrm{6}},\frac{\mathrm{4}}{\mathrm{3}}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\right)=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}},\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{y}−\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow{y}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)'=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{y}−\frac{\mathrm{2}}{\mathrm{3}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left({x}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$\Rightarrow{y}=−\frac{{x}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow{r}\mathrm{sin}\:\theta=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{r}\mathrm{cos}\:\theta+\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{4}}{\mathrm{3sin}\:\theta+\sqrt{\mathrm{3}}\mathrm{cos}\:\theta} \\ $$
Answered by Dwaipayan Shikari last updated on 12/May/21
$${r}=\frac{\mathrm{2}}{\mathrm{1}+{sin}\theta} \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:+{y}=\mathrm{2}\:\:\:\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{2}−{y}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{y}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{4} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{y}\left(\mathrm{2}−{y}\right)=\mathrm{4} \\ $$$$\Rightarrow\mathrm{4}{y}+{x}^{\mathrm{2}} −\mathrm{4}=\mathrm{0} \\ $$
Answered by TheSupreme last updated on 12/May/21
$${x}={rcos}\left(\theta\right)=\frac{\mathrm{2}}{\mathrm{1}+{sin}\left(\theta\right)}{cos}\left(\theta\right) \\ $$$${y}={rsin}\left(\theta\right)=\frac{\mathrm{2}}{\mathrm{1}+{sin}\left(\theta\right)}{sin}\left(\theta\right) \\ $$$${y}+{ysin}\left(\theta\right)=\mathrm{2}{sin}\left(\theta\right) \\ $$$${sin}\left(\theta\right)\left(\mathrm{2}−{y}\right)={y} \\ $$$${sin}\left(\theta\right)=\frac{{y}}{\mathrm{2}−{y}} \\ $$$${cos}\left(\theta\right)=\sqrt{\frac{\left(\mathrm{2}−{y}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} }{\left(\mathrm{2}−{y}\right)^{\mathrm{2}} }}=\frac{\sqrt{\mathrm{2}\left(\mathrm{2}−\mathrm{2}{y}\right)}}{\left(\mathrm{2}−{y}\right)} \\ $$$${tan}\left(\theta\right)=\frac{{y}}{\:\sqrt{\mathrm{2}\left(\mathrm{2}−\mathrm{2}{y}\right)}} \\ $$$${x}=\frac{{y}}{{tan}\left(\theta\right)}=\sqrt{\mathrm{2}\left(\mathrm{2}−\mathrm{2}{y}\right)} \\ $$$${x}^{\mathrm{2}} =\mathrm{4}−\mathrm{4}{y} \\ $$