Menu Close

Question-140888




Question Number 140888 by Ahmed1hamouda last updated on 13/May/21
Answered by physicstutes last updated on 14/May/21
(i) let M =  [(1,2,(−3)),(3,(−1),5),(4,1,(a^2 −14)) ]  for no solutions , ∣M∣ = 0  thus    determinant ((1,2,(−3)),(3,(−1),5),(4,1,(a^2 −14)))= 0  ⇒ 1 determinant (((−1),5),(1,(a^2 −14)))−2 determinant ((3,5),(4,(a^2 −14)))−3 determinant ((3,(−1)),(4,1))=0  ⇒  14−a^2 −5 −2[3(a^2 −14)−20]−3(3+4) = 0  ⇒ 14−a^2 −5−6a^2 +84+40−21 = 0  ⇒  7a^2 =112  ⇒ a^2  = 16 or a = ±4
$$\left(\mathrm{i}\right)\:\mathrm{let}\:{M}\:=\:\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{−\mathrm{3}}\\{\mathrm{3}}&{−\mathrm{1}}&{\mathrm{5}}\\{\mathrm{4}}&{\mathrm{1}}&{{a}^{\mathrm{2}} −\mathrm{14}}\end{bmatrix} \\ $$$$\mathrm{for}\:\mathrm{no}\:\mathrm{solutions}\:,\:\mid{M}\mid\:=\:\mathrm{0} \\ $$$$\mathrm{thus}\:\:\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}&{−\mathrm{3}}\\{\mathrm{3}}&{−\mathrm{1}}&{\mathrm{5}}\\{\mathrm{4}}&{\mathrm{1}}&{{a}^{\mathrm{2}} −\mathrm{14}}\end{vmatrix}=\:\mathrm{0}\:\:\Rightarrow\:\mathrm{1}\begin{vmatrix}{−\mathrm{1}}&{\mathrm{5}}\\{\mathrm{1}}&{{a}^{\mathrm{2}} −\mathrm{14}}\end{vmatrix}−\mathrm{2}\begin{vmatrix}{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{4}}&{{a}^{\mathrm{2}} −\mathrm{14}}\end{vmatrix}−\mathrm{3}\begin{vmatrix}{\mathrm{3}}&{−\mathrm{1}}\\{\mathrm{4}}&{\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{14}−{a}^{\mathrm{2}} −\mathrm{5}\:−\mathrm{2}\left[\mathrm{3}\left({a}^{\mathrm{2}} −\mathrm{14}\right)−\mathrm{20}\right]−\mathrm{3}\left(\mathrm{3}+\mathrm{4}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{14}−{a}^{\mathrm{2}} −\mathrm{5}−\mathrm{6}{a}^{\mathrm{2}} +\mathrm{84}+\mathrm{40}−\mathrm{21}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{7}{a}^{\mathrm{2}} =\mathrm{112}\:\:\Rightarrow\:{a}^{\mathrm{2}} \:=\:\mathrm{16}\:\mathrm{or}\:{a}\:=\:\pm\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *