Question Number 141153 by iloveisrael last updated on 16/May/21
Answered by iloveisrael last updated on 16/May/21
Commented by SamuelAsaana last updated on 16/May/21
$${i}\:{donot}\:{underdtand}\:{sir}\:{please}\:{explain}\:{for}\:{for}\:{me} \\ $$
Answered by mr W last updated on 16/May/21
$$\left({x}−{y}\right)^{\mathrm{3}} =\mathrm{5}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right) \\ $$$$\Rightarrow{x}−{y}=\sqrt[{\mathrm{3}}]{\mathrm{5}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)} \\ $$$$ \\ $$$$\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{6}{xy}\left({x}+{y}\right)=\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right) \\ $$$$\left({x}+{y}\right)^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}\left(\left({x}+{y}\right)^{\mathrm{2}} −\left({x}−{y}\right)^{\mathrm{2}} \right)\left({x}+{y}\right)=\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right) \\ $$$$\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{25}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\right)}\left({x}+{y}\right)+\mathrm{10}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Delta=−\mathrm{25}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\right)+\mathrm{25}\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\right)=\mathrm{100}\sqrt{\mathrm{6}}>\mathrm{0} \\ $$$$\left.\Rightarrow{x}+{y}=\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}−\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}+\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right.}\right) \\ $$$$ \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}−\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}+\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}+\sqrt[{\mathrm{3}}]{\mathrm{5}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)}\right]\approx−\mathrm{1}.\mathrm{209505} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}−\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{10}\sqrt[{\mathrm{4}}]{\mathrm{6}}+\mathrm{5}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{5}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)}\right]\approx−\mathrm{2}.\mathrm{376472} \\ $$
Commented by iloveisrael last updated on 16/May/21
$$\mathrm{Y}{es} \\ $$