Question Number 141163 by Niiicooooo last updated on 16/May/21
Answered by mindispower last updated on 16/May/21
$$\zeta\left({n}\right)=\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{k}^{{n}} } \\ $$$${k}^{{n}} \geqslant{nk}^{\mathrm{2}} \:{easy}\:{to}\:{see}\:{that}\:,{k}\geqslant\mathrm{2} \\ $$$${for}\:{n}>>\mathrm{2} \\ $$$$\Leftrightarrow{k}^{{n}−\mathrm{2}} \geqslant{n}..\left({E}\right) \\ $$$${by}\:{induction}\:{n}=\mathrm{4},{k}^{\mathrm{2}} \geqslant\mathrm{4},\mathrm{2}^{\mathrm{2}} \geqslant\mathrm{4}\:{true} \\ $$$${suppose}\:\forall{n}\geqslant\mathrm{4}\:..\left({E}\right)\:{true}\: \\ $$$${k}^{{n}−\mathrm{1}} ={k}\left({k}^{{n}−\mathrm{2}} \right)\geqslant{k}.{n}\geqslant\mathrm{2}{n}\geqslant{n}+\mathrm{1}, \\ $$$${so}\:\forall{k}\geqslant\mathrm{2},{n}\geqslant\mathrm{4}\:\:\:{k}^{{n}} \geqslant{nk}^{\mathrm{2}} \Rightarrow \\ $$$$\mathrm{1}\leqslant\zeta\left({n}\right)=\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{k}^{{n}} }\leqslant\mathrm{1}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{nk}^{\mathrm{2}} }=\mathrm{1}+\frac{\mathrm{1}}{{n}}\left(\zeta\left(\mathrm{2}\right)−\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{1}\leqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}}\zeta\left({n}\right)\leqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\left(\zeta\left(\mathrm{2}\right)−\mathrm{1}\right)\right) \\ $$$$\Leftrightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\zeta\left({n}\right)=\mathrm{1} \\ $$$$ \\ $$
Commented by Niiicooooo last updated on 17/May/21
$${greatful} \\ $$