Question Number 141289 by ajfour last updated on 17/May/21
Commented by ajfour last updated on 17/May/21
$$\:\:{x}^{\mathrm{3}} −{x}−{c}=\mathrm{0}\:.\:{To}\:{find}\:{excess}! \\ $$
Answered by ajfour last updated on 18/May/21
$$\:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${R}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\:\left({R}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({R}^{\mathrm{2}} −{c}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\left({R}^{\mathrm{2}} \right)^{\mathrm{3}} −\left(\mathrm{3}{c}^{\mathrm{2}} +\mathrm{2}\right)\left({R}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:+\left\{\left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)\right\}{R}^{\mathrm{2}} \\ $$$$\:\:−{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:{roots}\:{of}\:{x}^{\mathrm{3}} −{x}={c} \\ $$$${be}\:\alpha,\:−\beta,\:−\gamma\:\:{and}\:{corresponding} \\ $$$${radii}\:\:{p},\:{q},\:{r}. \\ $$$$\:\:{p}^{\mathrm{2}} =\alpha^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\:\:{q}^{\mathrm{2}} =\beta^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\:\:{r}^{\mathrm{2}} =\gamma^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\mathrm{2}{pr}\mathrm{cos}\:\left(\theta+\delta\right)+\left(\alpha−\gamma\right)^{\mathrm{2}} +\mathrm{4}{c}^{\mathrm{2}} \\ $$$$\:\:=\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${p}\mathrm{cos}\:\theta=\alpha,\:\:{r}\mathrm{cos}\:\delta=\gamma \\ $$$${p}\mathrm{sin}\:\theta={c},\:{r}\mathrm{sin}\:\delta={c} \\ $$$$\Rightarrow\:\mathrm{2}{pr}\left(\frac{\alpha\gamma−{c}^{\mathrm{2}} }{{pr}}\right)+\left(\alpha−\gamma\right)^{\mathrm{2}} \\ $$$$\:\:\:={p}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}{c}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}\left(\alpha\gamma−{c}^{\mathrm{2}} \right)+\left(\alpha−\gamma\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}{c}^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{3}{c}^{\mathrm{2}} +\mathrm{2} \\ $$$${p}^{\mathrm{2}} {r}^{\mathrm{2}} +{q}^{\mathrm{2}} \left({p}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)=\left({c}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}{c}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$${p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} =\:{c}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$${And}\:\:\alpha\gamma+\mathrm{1}=\left(\alpha+\gamma\right)^{\mathrm{2}} \\ $$$$\left(\alpha−\gamma\right)^{\mathrm{2}} =\mathrm{1}−\mathrm{3}\gamma\alpha \\ $$$$\:\:\alpha\gamma\left(\alpha+\gamma\right)={c} \\ $$$$\:\:\Rightarrow\:\:\alpha\gamma+\left(\alpha\gamma\right)^{\mathrm{2}} ={c}\left(\alpha+\gamma\right) \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{2}{c}^{\mathrm{2}} +\mathrm{1}−\alpha\gamma \\ $$$$\:\:\:\alpha^{\mathrm{2}} +\gamma^{\mathrm{2}} +\alpha\gamma=\mathrm{1} \\ $$$$… \\ $$