Menu Close

Question-141526




Question Number 141526 by sarkor last updated on 20/May/21
Answered by rs4089 last updated on 20/May/21
∫(x+1)(√(x^2 +2x )) dx  (1/2)∫(2x+2)(√(x^2 +2x)) dx  let x^2 +2x=t ⇒(2x+2)dx=dt  (1/2)∫(√t) dt=(1/2)(t^(3/2) /(3/2))=(1/3)t^(3/2) =(1/3)(√((x^2 +2x)^3 ))+C
$$\int\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}\:}\:{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{2}{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}\:{dx} \\ $$$${let}\:{x}^{\mathrm{2}} +\mathrm{2}{x}={t}\:\Rightarrow\left(\mathrm{2}{x}+\mathrm{2}\right){dx}={dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{{t}}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\frac{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{3}}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)^{\mathrm{3}} }+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *