Question Number 141643 by Gbenga last updated on 21/May/21
Answered by qaz last updated on 22/May/21
$${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{5}{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{16}^{{n}} } \\ $$$$=\left(\mathrm{5}{xD}+\mathrm{1}\right)^{\mathrm{2}} \mid_{{x}=\mathrm{1}/\mathrm{16}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \\ $$$$=\left[\mathrm{25}\left({xD}\right)^{\mathrm{2}} +\mathrm{10}{xD}+\mathrm{1}\right]_{{x}=\mathrm{1}/\mathrm{16}} \frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$=\left[\mathrm{25}{x}^{\mathrm{2}} {D}^{\mathrm{2}} +\mathrm{35}{xD}+\mathrm{1}\right]_{{x}=\mathrm{1}/\mathrm{16}} \frac{\mathrm{1}}{\mathrm{1}−{x}}……………….\left({xD}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} {D}^{\mathrm{2}} +{xD} \\ $$$$=\left[\frac{\mathrm{50}{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }+\frac{\mathrm{35}{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{x}}\right]_{{x}=\mathrm{1}/\mathrm{16}} \\ $$$$=\frac{\mathrm{50}×\mathrm{16}}{\mathrm{15}^{\mathrm{3}} }+\frac{\mathrm{35}×\mathrm{16}}{\mathrm{15}^{\mathrm{2}} }+\frac{\mathrm{16}}{\mathrm{15}} \\ $$$$=\frac{\mathrm{512}}{\mathrm{135}} \\ $$