Menu Close

Question-141872




Question Number 141872 by mohammad17 last updated on 24/May/21
Commented by mohammad17 last updated on 24/May/21
help me sir please
$${help}\:{me}\:{sir}\:{please} \\ $$
Commented by mohammad17 last updated on 24/May/21
????
$$???? \\ $$
Answered by Dwaipayan Shikari last updated on 24/May/21
(y^(1/4) /(sin^(−1) x))=u  ((xcosx)/4)log(sinx)−log(sin^(−1) x)=log(u)  ⇒((xcos^2 x)/(4sinx))+log(sinx)(−(x/4)sinx+((cosx)/4))−(1/(sin^(−1) x(√(1−x^2 ))))=(1/u).(du/dx)  (du/dx)=((y)^(1/4) /(sin^(−1) x))(((xcos^2 x)/(4sinx))+log(sinx)(−(x/4)sinx+((cosx)/4))−(1/(sin^(−1) x(√(1−x^2 )))))
$$\frac{{y}^{\mathrm{1}/\mathrm{4}} }{{sin}^{−\mathrm{1}} {x}}={u} \\ $$$$\frac{{xcosx}}{\mathrm{4}}{log}\left({sinx}\right)−{log}\left({sin}^{−\mathrm{1}} {x}\right)={log}\left({u}\right) \\ $$$$\Rightarrow\frac{{xcos}^{\mathrm{2}} {x}}{\mathrm{4}{sinx}}+{log}\left({sinx}\right)\left(−\frac{{x}}{\mathrm{4}}{sinx}+\frac{{cosx}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{{sin}^{−\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{{u}}.\frac{{du}}{{dx}} \\ $$$$\frac{{du}}{{dx}}=\frac{\sqrt[{\mathrm{4}}]{{y}}}{{sin}^{−\mathrm{1}} {x}}\left(\frac{{xcos}^{\mathrm{2}} {x}}{\mathrm{4}{sinx}}+{log}\left({sinx}\right)\left(−\frac{{x}}{\mathrm{4}}{sinx}+\frac{{cosx}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{{sin}^{−\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right) \\ $$
Commented by mohammad17 last updated on 24/May/21
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *