Menu Close

Question-142045




Question Number 142045 by Engr_Jidda last updated on 25/May/21
Answered by Dwaipayan Shikari last updated on 25/May/21
y=((1/x))^x   log(y)=−xlog(x)⇒((y′)/y)=−1−log(x)⇒y=−x^(−x) (1+log(x))
$${y}=\left(\frac{\mathrm{1}}{{x}}\right)^{{x}} \\ $$$${log}\left({y}\right)=−{xlog}\left({x}\right)\Rightarrow\frac{{y}'}{{y}}=−\mathrm{1}−{log}\left({x}\right)\Rightarrow{y}=−{x}^{−{x}} \left(\mathrm{1}+{log}\left({x}\right)\right) \\ $$
Commented by Engr_Jidda last updated on 25/May/21
thanks
$${thanks} \\ $$
Answered by EDWIN88 last updated on 26/May/21
(1) y=log (cos x) ⇒cos x = e^y   ⇒ −sin x = e^y . y′  ⇒y′=−sin x.e^(−y)  = −sin x.e^(−log (cos x))   ⇒y′=−sin x.sec x
$$\left(\mathrm{1}\right)\:\mathrm{y}=\mathrm{log}\:\left(\mathrm{cos}\:\mathrm{x}\right)\:\Rightarrow\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{e}^{\mathrm{y}} \\ $$$$\Rightarrow\:−\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{e}^{\mathrm{y}} .\:\mathrm{y}' \\ $$$$\Rightarrow\mathrm{y}'=−\mathrm{sin}\:\mathrm{x}.\mathrm{e}^{−\mathrm{y}} \:=\:−\mathrm{sin}\:\mathrm{x}.\mathrm{e}^{−\mathrm{log}\:\left(\mathrm{cos}\:\mathrm{x}\right)} \\ $$$$\Rightarrow\mathrm{y}'=−\mathrm{sin}\:\mathrm{x}.\mathrm{sec}\:\mathrm{x}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *