Menu Close

Question-142060




Question Number 142060 by iloveisrael last updated on 26/May/21
Answered by Ar Brandon last updated on 26/May/21
I=∫(1/x^2 )e^(1/x) sec(1+e^(1/x) )tan(1+e^(1/x) )dx  u=1+e^(1/x) ⇒du=−(1/x^2 )e^(1/x) dx  I=−∫sec(u)tan(u)du=−sec(u)+C    =−sec(1+e^(1/x) )+C
$$\mathrm{I}=\int\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \mathrm{sec}\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\mathrm{tan}\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\mathrm{dx} \\ $$$${u}=\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \Rightarrow\mathrm{d}{u}=−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \mathrm{dx} \\ $$$$\mathrm{I}=−\int\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right){du}=−\mathrm{sec}\left({u}\right)+\mathrm{C} \\ $$$$\:\:=−\mathrm{sec}\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)+\mathrm{C} \\ $$
Answered by EDWIN88 last updated on 26/May/21
J = ∫ (e^(1/x) /x^2 ) ((sin (1+e^(1/x) ))/(cos^2 (1+e^(1/x) ))) dx   let y = cos (1+e^(1/x) ) ⇒dy = (e^(1/x) /x^2 ).sin (1+e^(1/x) )dx  J = ∫ (dy/y^2 ) = −(1/y) + c   J= −sec (1+e^(1/x) ) + c
$$\mathrm{J}\:=\:\int\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{x}^{\mathrm{2}} }\:\frac{\mathrm{sin}\:\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)}\:\mathrm{dx} \\ $$$$\:\mathrm{let}\:\mathrm{y}\:=\:\mathrm{cos}\:\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\:\Rightarrow\mathrm{dy}\:=\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{x}^{\mathrm{2}} }.\mathrm{sin}\:\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\mathrm{dx} \\ $$$$\mathrm{J}\:=\:\int\:\frac{\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} }\:=\:−\frac{\mathrm{1}}{\mathrm{y}}\:+\:\mathrm{c}\: \\ $$$$\mathrm{J}=\:−\mathrm{sec}\:\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\:+\:\mathrm{c}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *