Question Number 142333 by mohammad17 last updated on 30/May/21
Commented by mohammad17 last updated on 30/May/21
$${please}\:{sir}\:{help}\:{me} \\ $$
Answered by Dwaipayan Shikari last updated on 30/May/21
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+\mathrm{4}\right)^{\mathrm{3}/\mathrm{2}} −\mathrm{8}}{{x}}=\frac{\mathrm{8}\left(\left(\mathrm{1}+\frac{{x}}{\mathrm{4}}\right)^{\mathrm{3}/\mathrm{2}} −\mathrm{1}\right)}{{x}}=\mathrm{8}\frac{\mathrm{1}+\frac{{x}}{\mathrm{4}}.\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}}{{x}}=\mathrm{3} \\ $$
Commented by mathmax by abdo last updated on 30/May/21
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\left(\mathrm{x}+\mathrm{4}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{8}}{\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{4}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{8}}{\mathrm{x}} \\ $$$$=\frac{\mathrm{8}\left\{\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{4}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right\}}{\mathrm{x}}\sim\frac{\mathrm{8}\left(\mathrm{1}+\frac{\mathrm{3x}}{\mathrm{8}}−\mathrm{1}\right)}{\mathrm{x}}=\mathrm{3}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{3} \\ $$$$ \\ $$
Answered by bramlexs22 last updated on 30/May/21
$${f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\left({x}+\mathrm{4}\right)^{\mathrm{3}} }−\mathrm{8}}{{x}} \\ $$$${f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+\mathrm{4}\right)^{\mathrm{3}} −\mathrm{64}}{{x}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{\left({x}+\mathrm{4}\right)^{\mathrm{3}} }+\mathrm{8}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{48}\right)}{{x}}.\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$=\:\frac{\mathrm{48}}{\mathrm{16}}\:=\:\mathrm{3}\: \\ $$