Menu Close

Question-142383




Question Number 142383 by liki last updated on 30/May/21
Commented by liki last updated on 30/May/21
help me qn no 4
$$\mathrm{help}\:\mathrm{me}\:\mathrm{qn}\:\mathrm{no}\:\mathrm{4} \\ $$
Answered by physicstutes last updated on 31/May/21
4(a) f(z) = ((7−z)/(1−z^2 )), z = 1 + 2i  f(z) = ((7−1−2i)/(1−(1−4+4i))) = ((6−2i)/(4−4i))   ∣f(z)∣ = ((√(6^2 +2^2 ))/( (√(4^2 +4^2 )))) = (√(5/4)) = ((√5)/2)     2∣f(z)∣ = (√5)  ∣z∣ = (√(1+2^2 )) = (√5)  Hence  ∣z∣ = 2∣f(z)∣.
$$\mathrm{4}\left(\mathrm{a}\right)\:{f}\left({z}\right)\:=\:\frac{\mathrm{7}−{z}}{\mathrm{1}−{z}^{\mathrm{2}} },\:{z}\:=\:\mathrm{1}\:+\:\mathrm{2}{i} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{7}−\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}−\left(\mathrm{1}−\mathrm{4}+\mathrm{4}{i}\right)}\:=\:\frac{\mathrm{6}−\mathrm{2}{i}}{\mathrm{4}−\mathrm{4}{i}}\: \\ $$$$\mid{f}\left({z}\right)\mid\:=\:\frac{\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}{\:\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }}\:=\:\sqrt{\frac{\mathrm{5}}{\mathrm{4}}}\:=\:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\: \\ $$$$\mathrm{2}\mid{f}\left({z}\right)\mid\:=\:\sqrt{\mathrm{5}} \\ $$$$\mid{z}\mid\:=\:\sqrt{\mathrm{1}+\mathrm{2}^{\mathrm{2}} }\:=\:\sqrt{\mathrm{5}} \\ $$$$\mathrm{Hence}\:\:\mid{z}\mid\:=\:\mathrm{2}\mid{f}\left({z}\right)\mid. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *