Menu Close

Question-142404




Question Number 142404 by mohammad17 last updated on 31/May/21
Commented by mohammad17 last updated on 31/May/21
help me sir please
$${help}\:{me}\:{sir}\:{please} \\ $$
Answered by Ar Brandon last updated on 31/May/21
I=∫(dx/(sec xtan^2 x))=∫((sec^2 x−tan^2 x)/(sec xtan^2 x))dx     =∫((cos x)/(sin^2 x))dx−∫cosxdx=−(1/(sin x))−sin x+C
$$\mathcal{I}=\int\frac{\mathrm{dx}}{\mathrm{sec}\:\mathrm{xtan}^{\mathrm{2}} \mathrm{x}}=\int\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}}{\mathrm{sec}\:\mathrm{xtan}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$\:\:\:=\int\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}−\int\mathrm{cosxdx}=−\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}−\mathrm{sin}\:\mathrm{x}+\mathrm{C} \\ $$
Answered by Ar Brandon last updated on 31/May/21
J=∫cot^3 xcsc^3 xdx     =∫(cot^2 xcsc^2 x)(csc xcot x)dx     =−∫(csc^4 x−csc^2 x)d(csc x)     =((csc^3 x)/3)−((csc^5 x)/5)+C
$$\mathrm{J}=\int\mathrm{cot}^{\mathrm{3}} \mathrm{xcsc}^{\mathrm{3}} \mathrm{xdx} \\ $$$$\:\:\:=\int\left(\mathrm{cot}^{\mathrm{2}} \mathrm{xcsc}^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{csc}\:\mathrm{xcot}\:\mathrm{x}\right)\mathrm{dx} \\ $$$$\:\:\:=−\int\left(\mathrm{csc}^{\mathrm{4}} \mathrm{x}−\mathrm{csc}^{\mathrm{2}} \mathrm{x}\right)\mathrm{d}\left(\mathrm{csc}\:\mathrm{x}\right) \\ $$$$\:\:\:=\frac{\mathrm{csc}^{\mathrm{3}} \mathrm{x}}{\mathrm{3}}−\frac{\mathrm{csc}^{\mathrm{5}} \mathrm{x}}{\mathrm{5}}+\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *