Menu Close

Question-142503




Question Number 142503 by Gbenga last updated on 01/Jun/21
Answered by mr W last updated on 01/Jun/21
x^x^(40)  =50^x   x^x^(39)  =50  (x^x^(39)  )^(39) =50^(39)   (x^(39) )^x^(39)  =50^(39)   let t=x^(39)   t^t =59^(39)   ln t=((39ln 50)/t)  39ln 50=((39ln 50)/t)e^((39ln 50)/t)   ((39ln 50)/t)=W(39ln 50)  t=((39ln 50)/(W(39ln 50)))  x^(39) =t=((39ln 50)/(W(39ln 50)))  ⇒x=(((39ln 50)/(W(39ln 50))))^(1/(39))          ≈(((39ln 50)/(3.71518721)))^(1/(39)) =1.099946
$${x}^{{x}^{\mathrm{40}} } =\mathrm{50}^{{x}} \\ $$$${x}^{{x}^{\mathrm{39}} } =\mathrm{50} \\ $$$$\left({x}^{{x}^{\mathrm{39}} } \right)^{\mathrm{39}} =\mathrm{50}^{\mathrm{39}} \\ $$$$\left({x}^{\mathrm{39}} \right)^{{x}^{\mathrm{39}} } =\mathrm{50}^{\mathrm{39}} \\ $$$${let}\:{t}={x}^{\mathrm{39}} \\ $$$${t}^{{t}} =\mathrm{59}^{\mathrm{39}} \\ $$$$\mathrm{ln}\:{t}=\frac{\mathrm{39ln}\:\mathrm{50}}{{t}} \\ $$$$\mathrm{39ln}\:\mathrm{50}=\frac{\mathrm{39ln}\:\mathrm{50}}{{t}}{e}^{\frac{\mathrm{39ln}\:\mathrm{50}}{{t}}} \\ $$$$\frac{\mathrm{39ln}\:\mathrm{50}}{{t}}={W}\left(\mathrm{39ln}\:\mathrm{50}\right) \\ $$$${t}=\frac{\mathrm{39ln}\:\mathrm{50}}{{W}\left(\mathrm{39ln}\:\mathrm{50}\right)} \\ $$$${x}^{\mathrm{39}} ={t}=\frac{\mathrm{39ln}\:\mathrm{50}}{{W}\left(\mathrm{39ln}\:\mathrm{50}\right)} \\ $$$$\Rightarrow{x}=\sqrt[{\mathrm{39}}]{\frac{\mathrm{39ln}\:\mathrm{50}}{{W}\left(\mathrm{39ln}\:\mathrm{50}\right)}} \\ $$$$\:\:\:\:\:\:\:\approx\sqrt[{\mathrm{39}}]{\frac{\mathrm{39ln}\:\mathrm{50}}{\mathrm{3}.\mathrm{71518721}}}=\mathrm{1}.\mathrm{099946} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *