Menu Close

Question-142725




Question Number 142725 by mathlove last updated on 04/Jun/21
Commented by Olaf_Thorendsen last updated on 04/Jun/21
https://peterjamesthomas.com/category/general/social−media/?hcb=1
https://peterjamesthomas.com/category/general/socialmedia/?hcb=1
Commented by MJS_new last updated on 04/Jun/21
there are about 7 900 000 000 people on this planet  and probably less than 79 000 000 can solve  this:  x^4 −8x^3 +2x^2 +8x+1=0  I can − so what?!
thereareabout7900000000peopleonthisplanetandprobablylessthan79000000cansolvethis:x48x3+2x2+8x+1=0Icansowhat?!
Commented by 1549442205PVT last updated on 05/Jun/21
This equation is too easy!  x^4 −8x^3 +2x^2 +8x+1=0  ⇔(x^2 +(1/x^2 ))−8(x−(1/x))+2=0.put (x−(1/x))=t  we get  t^2 +2−8t+2=0⇔t^2 −8t+4=0  Δ′=12=(2(√3))^2 ⇒t=4±2(√3)  i)x−(1/x)=4+2(√3) ⇔x^2 −(4+2(√3))x−1=0  Δ′=(2+(√3))^2 +1=8+4(√3)=[(√2)((√3)+1)]^2   x=2+(√3)±((√6)+(√2))  ii)x−(1/x)=4−2(√3)⇔x^2 −2(2−(√3))x−1=0  Δ′=(2−(√3))^2 +1=8−4(√3)=((√6)−(√2))^2   x=2−(√3)±((√6)−(√2))
Thisequationistooeasy!x48x3+2x2+8x+1=0(x2+1x2)8(x1x)+2=0.put(x1x)=twegett2+28t+2=0t28t+4=0Δ=12=(23)2t=4±23i)x1x=4+23x2(4+23)x1=0Δ=(2+3)2+1=8+43=[2(3+1)]2x=2+3±(6+2)ii)x1x=423x22(23)x1=0Δ=(23)2+1=843=(62)2x=23±(62)
Commented by MJS_new last updated on 05/Jun/21
Ok, now ask 1000 randomly chosen people  and tell us the percentage of right answers
Ok,nowask1000randomlychosenpeopleandtellusthepercentageofrightanswers
Commented by Dwaipayan Shikari last updated on 05/Jun/21
Actually no one has done it yet. It is Riemann Hypothesis.  0.0000000001% can do this
Actuallynoonehasdoneityet.ItisRiemannHypothesis.0.0000000001%candothis
Commented by MJS_new last updated on 05/Jun/21
I know. but follow the link posted by Sir Olaf.
Iknow.butfollowthelinkpostedbySirOlaf.
Commented by Tawa11 last updated on 06/Nov/21
Nice
Nice
Answered by Dwaipayan Shikari last updated on 05/Jun/21
z=w+bi  Σ_(n=1) ^∞ (1/n^z )=Σ_(n=1) ^∞ n^(−w) n^(−bi)   =Σ_(n=1) ^∞ n^(−w) e^(−bilog(n)) =Σ_(n=1) ^∞ n^(−w) cos(blog(n))−in^(−w) sin(blog(n))  ℜ(ζ(z))=Σ_(n=1) ^∞ ((cos(blog(n)))/n^w )  Now Σ_(n=1) ^∞ ((cos(blog(n)))/n^w )−i((sin(blog(n))/n^w ) =0  People believe that ℜ(z)=(1/2)
z=w+bin=11nz=n=1nwnbi=n=1nwebilog(n)=n=1nwcos(blog(n))inwsin(blog(n))(ζ(z))=n=1cos(blog(n))nwNown=1cos(blog(n))nwisin(blog(n)nw=0Peoplebelievethat(z)=12
Commented by MJS_new last updated on 04/Jun/21
welcome among the chosen few!
welcomeamongthechosenfew!

Leave a Reply

Your email address will not be published. Required fields are marked *