Menu Close

Question-143031




Question Number 143031 by rs4089 last updated on 09/Jun/21
Answered by mnjuly1970 last updated on 09/Jun/21
(π^2 /6)+ln^2 (2)....
π26+ln2(2).
Answered by Dwaipayan Shikari last updated on 09/Jun/21
S=Σ_(n=1) ^∞ H_n ^2 x^n =H_1 ^2 x+H_2 ^2 x^2 +H_3 x^3 +...  S(1−x)=x+(H_2 ^2 −H_1 ^2 )x^2 +(H_3 ^2 −H_2 ^2 )x^3 +...  S(1−x)=x+((H_2 +H_1 )/2)x^2 +((H_2 +H_3 )/3)x^3 +...    H_(n−1) =H_n −(1/n)  S(1−x)=Σ_(n=1) ^∞ ((H_n +H_(n−1) )/n)x^n =Σ_(n=1) ^∞ ((2H_n −(1/n))/n)x^n   ⇒S(1−x)=2Σ_(n=1) ^∞ (H_n /n)x^n −Σ_(n=1) ^∞ (x^n /n^2 )            Σ_(n=1) ^∞ H_n x^(n−1) =−((log(1−x))/(x(1−x)))  Σ_(n=1) ^∞ (H_n /(n2^n ))=−∫_0 ^(1/2) ((log(1−x))/x)dx−∫_0 ^(1/2) ((log(1−x))/(1−x))dx  =Li_2 ((1/2))+(1/2)log^2 (2)  Li_2 (1−x)+Li_2 (x)=(π^2 /6)−(1/2)log(x)log(1−x)  ⇒Li_2 ((1/2))=(π^2 /(12))−(1/2)log^2 (2)  S(1−(1/2))=2(Li_2 ((1/2))+log^2 (2))−Li_2 ((1/2))  S=2Li_2 ((1/2))+2log^2 (2)=(π^2 /6)+log^2 (2)
S=n=1Hn2xn=H12x+H22x2+H3x3+S(1x)=x+(H22H12)x2+(H32H22)x3+S(1x)=x+H2+H12x2+H2+H33x3+Hn1=Hn1nS(1x)=n=1Hn+Hn1nxn=n=12Hn1nnxnS(1x)=2n=1Hnnxnn=1xnn2n=1Hnxn1=log(1x)x(1x)n=1Hnn2n=01/2log(1x)xdx01/2log(1x)1xdx=Li2(12)+12log2(2)Li2(1x)+Li2(x)=π2612log(x)log(1x)Li2(12)=π21212log2(2)S(112)=2(Li2(12)+log2(2))Li2(12)S=2Li2(12)+2log2(2)=π26+log2(2)
Commented by mnjuly1970 last updated on 09/Jun/21
greate....
greate.

Leave a Reply

Your email address will not be published. Required fields are marked *