Question Number 143127 by liberty last updated on 10/Jun/21
Answered by EDWIN88 last updated on 11/Jun/21
$$\:\mathrm{Let}\:\begin{cases}{\overset{\rightarrow} {\mathrm{a}}=\mathrm{QR}=\left(\mathrm{1},\mathrm{3},−\mathrm{1}\right)}\\{\overset{\rightarrow} {\mathrm{b}}=\mathrm{QS}=\left(−\mathrm{3},\mathrm{2},\mathrm{3}\right)}\\{\overset{\rightarrow} {\mathrm{c}}=\mathrm{QP}=\left(\mathrm{0},\mathrm{3},\mathrm{3}\right)}\end{cases} \\ $$$$\mathrm{distance}\:\mathrm{d}\:\mathrm{from}\:\mathrm{P}\:\mathrm{to}\:\mathrm{plane}\:\mathrm{is}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{d}\:=\:\frac{\mid\overset{\rightarrow} {\mathrm{a}}.\left(\overset{\rightarrow} {\mathrm{b}}×\overset{\rightarrow} {\mathrm{c}}\right)\mid}{\mid\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\mid} \\ $$$$\left(\mathrm{1}\right)\overset{\rightarrow} {\mathrm{a}}.\left(\overset{\rightarrow} {\mathrm{b}}×\overset{\rightarrow} {\mathrm{c}}\right)=\begin{vmatrix}{\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:−\mathrm{1}\:}\\{−\mathrm{3}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{3}\:}\\{\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}\left(−\mathrm{3}\right)−\mathrm{3}\left(−\mathrm{9}\right)−\mathrm{1}\left(−\mathrm{9}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{3}+\mathrm{27}+\mathrm{9}\:=\:\mathrm{33} \\ $$$$\left(\mathrm{2}\right)\:\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\:=\:\begin{vmatrix}{\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:−\mathrm{1}}\\{−\mathrm{3}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{3}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{11},\mathrm{0},\mathrm{11}\right) \\ $$$$\Rightarrow\:\mathrm{distance}\:=\:\frac{\mathrm{33}}{\:\sqrt{\mathrm{121}+\mathrm{121}}}\:=\:\frac{\mathrm{33}}{\mathrm{11}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{distance}\:=\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}\:\Box\: \\ $$
Commented by EDWIN88 last updated on 11/Jun/21
$$\mathrm{wrong}. \\ $$$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{d}\:=\:\frac{\mid\overset{\rightarrow} {\mathrm{b}}.\left(\overset{\rightarrow} {\mathrm{c}}×\overset{\rightarrow} {\mathrm{a}}\right)\mid}{\mid\overset{\rightarrow} {\mathrm{b}}×\overset{\rightarrow} {\mathrm{c}}\mid} \\ $$$$\mathrm{where}\:\overset{\rightarrow} {\mathrm{b}}.\left(\overset{\rightarrow} {\mathrm{c}}×\overset{\rightarrow} {\mathrm{a}}\right)=\:\begin{vmatrix}{\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:−\mathrm{1}}\\{−\mathrm{3}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}\left(−\mathrm{3}\right)−\mathrm{3}\left(−\mathrm{9}\right)−\mathrm{1}\left(−\mathrm{9}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{3}+\mathrm{27}+\mathrm{9}\:=\:\mathrm{33} \\ $$$$\mathrm{and}\:\overset{\rightarrow} {\mathrm{b}}×\overset{\rightarrow} {\mathrm{c}}=\:\begin{vmatrix}{\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{3}\:\:\:\:\:−\mathrm{1}}\\{−\mathrm{3}\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{11},\mathrm{0},\mathrm{11}\right) \\ $$$$\mathrm{therefore}\:\mathrm{d}\:=\:\frac{\mathrm{33}}{\:\sqrt{\mathrm{121}+\mathrm{121}}}\:=\:\frac{\mathrm{33}}{\mathrm{11}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by liberty last updated on 10/Jun/21
$${If}\:\begin{cases}{\overset{\rightarrow} {{a}}=\left(\mathrm{0},\mathrm{3},\mathrm{3}\right)}\\{\overset{\rightarrow} {{b}}=\left(\mathrm{1},\mathrm{3},−\mathrm{1}\right)}\\{\overset{\rightarrow} {{c}}=\left(−\mathrm{3},\mathrm{2},\mathrm{3}\right)}\end{cases} \\ $$$$\:\Rightarrow{d}\:=\:\frac{\mid\overset{\rightarrow} {{a}}.\left(\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\right)\mid}{\mid\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}\mid} \\ $$$$\overset{\rightarrow} {{a}}.\left(\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\right)=\:\begin{vmatrix}{\:\:\mathrm{0}\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\mathrm{3}}\\{\:\:\mathrm{1}\:\:\:\:\:\mathrm{3}\:\:\:\:−\mathrm{1}}\\{−\mathrm{3}\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{3}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{11},\mathrm{0},\mathrm{11}\right) \\ $$$$\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}=\:\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{1}\:\:\:\:\:\mathrm{3}\:\:\:−\mathrm{1}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\left(−\mathrm{12},\mathrm{3},−\mathrm{3}\right) \\ $$$$\:\Rightarrow{d}\:=\:\frac{\mathrm{11}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{144}+\mathrm{9}+\mathrm{9}}}\:=\:\frac{\mathrm{11}\sqrt{\mathrm{2}}}{\mathrm{9}\sqrt{\mathrm{2}}}\:=\frac{\mathrm{11}}{\mathrm{9}}? \\ $$
Answered by mr W last updated on 11/Jun/21
$$\boldsymbol{{a}}=\overset{\rightarrow} {{QR}}=\left(\mathrm{1},\mathrm{3},−\mathrm{1}\right) \\ $$$$\boldsymbol{{b}}=\overset{\rightarrow} {{QS}}=\left(−\mathrm{3},\mathrm{2},\mathrm{3}\right) \\ $$$$\boldsymbol{{c}}=\overset{\rightarrow} {{QP}}=\left(\mathrm{0},\mathrm{3},\mathrm{3}\right) \\ $$$$\boldsymbol{{a}}×\boldsymbol{{b}}=\begin{vmatrix}{\mathrm{1}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{3}}&{\mathrm{2}}&{\mathrm{3}}\end{vmatrix}=\left(\mathrm{11},\mathrm{0},\mathrm{11}\right) \\ $$$${d}=\frac{\boldsymbol{{c}}\centerdot\left(\boldsymbol{{a}}×\boldsymbol{{b}}\right)}{\mid\boldsymbol{{a}}×\boldsymbol{{b}}\mid}=\frac{\mathrm{0}×\mathrm{11}+\mathrm{3}×\mathrm{0}+\mathrm{3}×\mathrm{11}}{\:\sqrt{\mathrm{11}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} +\mathrm{11}^{\mathrm{2}} }}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by mr W last updated on 10/Jun/21