Question Number 143130 by liberty last updated on 10/Jun/21
Commented by liberty last updated on 10/Jun/21
Answered by EDWIN88 last updated on 10/Jun/21
$$\mathrm{let}\:\mathrm{y}=\mathrm{px} \\ $$$$\begin{cases}{\mathrm{x}+\mathrm{px}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{p}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\:=\mathrm{7}}\\{\left(\mathrm{x}−\mathrm{px}\right)\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{p}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }=\mathrm{12}}\end{cases}\Rightarrow\begin{cases}{\mathrm{x}\left(\mathrm{1}+\mathrm{p}\right)+\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} }=\mathrm{7}}\\{\mathrm{x}\left(\frac{\mathrm{1}−\mathrm{p}}{\mathrm{p}^{\mathrm{2}} }\right)=\mathrm{12}}\end{cases} \\ $$$$\begin{cases}{\mathrm{x}=\frac{\mathrm{7p}^{\mathrm{2}} −\mathrm{1}}{\mathrm{p}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{p}\right)}}\\{\mathrm{x}=\frac{\mathrm{12p}^{\mathrm{2}} }{\mathrm{1}−\mathrm{p}}}\end{cases}\:\Rightarrow\frac{\mathrm{12p}^{\mathrm{2}} }{\mathrm{1}−\mathrm{p}^{\mathrm{2}} }\:=\:\frac{\mathrm{7p}^{\mathrm{2}} −\mathrm{1}}{\mathrm{p}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{p}\right)} \\ $$$$\Rightarrow\mathrm{12p}^{\mathrm{4}} \left(\mathrm{1}+\mathrm{p}\right)=\left(\mathrm{7p}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{1}−\mathrm{p}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{12p}^{\mathrm{4}} +\mathrm{12p}^{\mathrm{5}} \:=\:−\mathrm{7p}^{\mathrm{4}} +\mathrm{8p}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\mathrm{12p}^{\mathrm{5}} +\mathrm{19p}^{\mathrm{4}} −\mathrm{8p}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{12p}^{\mathrm{4}} +\mathrm{7p}^{\mathrm{3}} −\mathrm{7p}^{\mathrm{2}} −\mathrm{p}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{12p}^{\mathrm{3}} −\mathrm{5p}^{\mathrm{2}} −\mathrm{2p}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{12p}^{\mathrm{3}} −\mathrm{5p}^{\mathrm{2}} −\mathrm{2p}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{p}=−\mathrm{1}\:\left(\mathrm{rejected}\right) \\ $$$$\mathrm{12p}^{\mathrm{3}} −\mathrm{5p}^{\mathrm{2}} −\mathrm{2p}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{p}\:\approx\:−\mathrm{0}.\mathrm{4279} \\ $$$$\mathrm{then}\:\mathrm{y}\:=\:−\mathrm{0}.\mathrm{4279x} \\ $$$$\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{12}\left(−\mathrm{0}.\mathrm{4279}\right)^{\mathrm{2}} }{\mathrm{1}−\left(−\mathrm{0}.\mathrm{4279}\right)}\:=\:\mathrm{1}.\mathrm{386} \\ $$$$\Rightarrow\mathrm{y}=−\mathrm{0}.\mathrm{43}×\mathrm{1}.\mathrm{55}\:=\:−\mathrm{0}.\mathrm{558} \\ $$