Menu Close

Question-143200




Question Number 143200 by Guddone last updated on 11/Jun/21
Answered by Dwaipayan Shikari last updated on 11/Jun/21
2x+3y= [((2  3)),((4  0)) ]⇒6x+9y= [(( 6    9)),(( 12  0)) ]→(a)  3x+2y= [((2  −2)),((−1  5)) ]⇒6x+4y= [(( 4  −4)),(( −2  10)) ]→(b)  a−b ⇒5y= [((2      13  )),((14 −10)) ]⇒y= [(((2/5)  ((13)/5))),((((14)/5) −2)) ]  x=(1/2)( [((2 3)),((4 0)) ]− [(((6/5) ((39)/5))),(( ((42)/5)  −6)) ])=(1/2)( [(((4/5) ((−24)/5))),((((−22)/5)  6)) ])= [(((2/5) −((12)/5))),((−((11)/5)   3)) ]
$$\mathrm{2}{x}+\mathrm{3}{y}=\begin{bmatrix}{\mathrm{2}\:\:\mathrm{3}}\\{\mathrm{4}\:\:\mathrm{0}}\end{bmatrix}\Rightarrow\mathrm{6}{x}+\mathrm{9}{y}=\begin{bmatrix}{\:\mathrm{6}\:\:\:\:\mathrm{9}}\\{\:\mathrm{12}\:\:\mathrm{0}}\end{bmatrix}\rightarrow\left({a}\right) \\ $$$$\mathrm{3}{x}+\mathrm{2}{y}=\begin{bmatrix}{\mathrm{2}\:\:−\mathrm{2}}\\{−\mathrm{1}\:\:\mathrm{5}}\end{bmatrix}\Rightarrow\mathrm{6}{x}+\mathrm{4}{y}=\begin{bmatrix}{\:\mathrm{4}\:\:−\mathrm{4}}\\{\:−\mathrm{2}\:\:\mathrm{10}}\end{bmatrix}\rightarrow\left({b}\right) \\ $$$${a}−{b}\:\Rightarrow\mathrm{5}{y}=\begin{bmatrix}{\mathrm{2}\:\:\:\:\:\:\mathrm{13}\:\:}\\{\mathrm{14}\:−\mathrm{10}}\end{bmatrix}\Rightarrow{y}=\begin{bmatrix}{\frac{\mathrm{2}}{\mathrm{5}}\:\:\frac{\mathrm{13}}{\mathrm{5}}}\\{\frac{\mathrm{14}}{\mathrm{5}}\:−\mathrm{2}}\end{bmatrix} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\left(\begin{bmatrix}{\mathrm{2}\:\mathrm{3}}\\{\mathrm{4}\:\mathrm{0}}\end{bmatrix}−\begin{bmatrix}{\frac{\mathrm{6}}{\mathrm{5}}\:\frac{\mathrm{39}}{\mathrm{5}}}\\{\:\frac{\mathrm{42}}{\mathrm{5}}\:\:−\mathrm{6}}\end{bmatrix}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\begin{bmatrix}{\frac{\mathrm{4}}{\mathrm{5}}\:\frac{−\mathrm{24}}{\mathrm{5}}}\\{\frac{−\mathrm{22}}{\mathrm{5}}\:\:\mathrm{6}}\end{bmatrix}\right)=\begin{bmatrix}{\frac{\mathrm{2}}{\mathrm{5}}\:−\frac{\mathrm{12}}{\mathrm{5}}}\\{−\frac{\mathrm{11}}{\mathrm{5}}\:\:\:\mathrm{3}}\end{bmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *