Menu Close

Question-143322




Question Number 143322 by enter last updated on 13/Jun/21
Answered by mr W last updated on 13/Jun/21
Commented by mr W last updated on 13/Jun/21
R=radius of big circle  r=radius of small circles  OC=R−r  (R−r)^2 −r^2 =((R/2))^2   ⇒(r/R)=(3/8)  sin α=(r/(R−r))=(3/5)  BC^2 =R^2 +(R−r)^2 −2R(R−r)sin α           =R^2 +((25R^2 )/(64))−2R×((5R)/8)×(3/5)          =((41R^2 )/(64))  b^2 =BD^2 =BC^2 −r^2 =((41R^2 )/(64))−((9R^2 )/(64))=(R^2 /2)  ⇒b=(((√2)R)/2)  AC^2 =R^2 +(R−r)^2 +2R(R−r)sin α           =R^2 +((25R^2 )/(64))+2R×((5R)/8)×(3/5)           =((137R^2 )/(64))  a^2 =AE^2 =AC^2 −r^2 =((137R^2 )/(64))−((9R^2 )/(64))=2R^2   ⇒a=(√2)R  ⇒(a/b)=2
$${R}={radius}\:{of}\:{big}\:{circle} \\ $$$${r}={radius}\:{of}\:{small}\:{circles} \\ $$$${OC}={R}−{r} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} =\left(\frac{{R}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\mathrm{sin}\:\alpha=\frac{{r}}{{R}−{r}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${BC}^{\mathrm{2}} ={R}^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} −\mathrm{2}{R}\left({R}−{r}\right)\mathrm{sin}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:={R}^{\mathrm{2}} +\frac{\mathrm{25}{R}^{\mathrm{2}} }{\mathrm{64}}−\mathrm{2}{R}×\frac{\mathrm{5}{R}}{\mathrm{8}}×\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{41}{R}^{\mathrm{2}} }{\mathrm{64}} \\ $$$${b}^{\mathrm{2}} ={BD}^{\mathrm{2}} ={BC}^{\mathrm{2}} −{r}^{\mathrm{2}} =\frac{\mathrm{41}{R}^{\mathrm{2}} }{\mathrm{64}}−\frac{\mathrm{9}{R}^{\mathrm{2}} }{\mathrm{64}}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{b}=\frac{\sqrt{\mathrm{2}}{R}}{\mathrm{2}} \\ $$$${AC}^{\mathrm{2}} ={R}^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} +\mathrm{2}{R}\left({R}−{r}\right)\mathrm{sin}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:={R}^{\mathrm{2}} +\frac{\mathrm{25}{R}^{\mathrm{2}} }{\mathrm{64}}+\mathrm{2}{R}×\frac{\mathrm{5}{R}}{\mathrm{8}}×\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{137}{R}^{\mathrm{2}} }{\mathrm{64}} \\ $$$${a}^{\mathrm{2}} ={AE}^{\mathrm{2}} ={AC}^{\mathrm{2}} −{r}^{\mathrm{2}} =\frac{\mathrm{137}{R}^{\mathrm{2}} }{\mathrm{64}}−\frac{\mathrm{9}{R}^{\mathrm{2}} }{\mathrm{64}}=\mathrm{2}{R}^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\sqrt{\mathrm{2}}{R} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\mathrm{2} \\ $$
Commented by peter frank last updated on 13/Jun/21
sorry sir which application are  using drawing?
$${sorry}\:{sir}\:{which}\:{application}\:{are} \\ $$$${using}\:{drawing}? \\ $$
Commented by mr W last updated on 13/Jun/21
if you mean the image, i used the  app photo editor.
$${if}\:{you}\:{mean}\:{the}\:{image},\:{i}\:{used}\:{the} \\ $$$${app}\:{photo}\:{editor}. \\ $$
Commented by Engr_Jidda last updated on 13/Jun/21
link to download it please
$${link}\:{to}\:{download}\:{it}\:{please} \\ $$
Commented by mr W last updated on 13/Jun/21
https://play.google.com/store/apps/details?id=com.iudesk.android.photo.editor&pcampaignid=MKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1

Leave a Reply

Your email address will not be published. Required fields are marked *