Menu Close

Question-143443




Question Number 143443 by mnjuly1970 last updated on 14/Jun/21
Commented by amin96 last updated on 14/Jun/21
?
$$? \\ $$$$ \\ $$
Answered by mr W last updated on 14/Jun/21
say R=radius  cos α=(R/b)  (b sin α+a cos α)^2 +(a sin α)^2 =R^2   b^2  sin^2  α+2ab sin αcos α+a^2 =b^2 cos^2  α  a^2 =b(b cos 2α−a sin 2α)  a^2 =b(√(a^2 +b^2 ))(cos ϕ cos 2α−sin ϕ sin 2α)  (a^2 /(b(√(a^2 +b^2 ))))=cos (ϕ+2α)  2α=cos^(−1) (a^2 /(b(√(a^2 +b^2 ))))−cos^(−1) (b^2 /( b(√(a^2 +b^2 ))))  cos 2α=((a(ab+(√(a^2 b^2 +b^4 −a^4 ))))/( b(a^2 +b^2 )))  ⇒tan α=(√((b^3 −a(√(a^2 b^2 +b^4 −a^4 )))/(2a^2 b+b^3 +a(√(a^2 b^2 +b^4 −a^4 )))))
$${say}\:{R}={radius} \\ $$$$\mathrm{cos}\:\alpha=\frac{{R}}{{b}} \\ $$$$\left({b}\:\mathrm{sin}\:\alpha+{a}\:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +\left({a}\:\mathrm{sin}\:\alpha\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\alpha+\mathrm{2}{ab}\:\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha+{a}^{\mathrm{2}} ={b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$${a}^{\mathrm{2}} ={b}\left({b}\:\mathrm{cos}\:\mathrm{2}\alpha−{a}\:\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$${a}^{\mathrm{2}} ={b}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left(\mathrm{cos}\:\varphi\:\mathrm{cos}\:\mathrm{2}\alpha−\mathrm{sin}\:\varphi\:\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\mathrm{cos}\:\left(\varphi+\mathrm{2}\alpha\right) \\ $$$$\mathrm{2}\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{a}^{\mathrm{2}} }{{b}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}−\mathrm{cos}^{−\mathrm{1}} \frac{{b}^{\mathrm{2}} }{\:{b}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=\frac{{a}\left({ab}+\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} −{a}^{\mathrm{4}} }\right)}{\:{b}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\sqrt{\frac{{b}^{\mathrm{3}} −{a}\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} −{a}^{\mathrm{4}} }}{\mathrm{2}{a}^{\mathrm{2}} {b}+{b}^{\mathrm{3}} +{a}\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} −{a}^{\mathrm{4}} }}} \\ $$
Commented by mnjuly1970 last updated on 14/Jun/21
thanks alot Mr  W....
$${thanks}\:{alot}\:{Mr}\:\:{W}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *