Menu Close

Question-143598




Question Number 143598 by mohammad17 last updated on 16/Jun/21
Commented by mohammad17 last updated on 16/Jun/21
help me sir
$${help}\:{me}\:{sir} \\ $$
Commented by mohammad17 last updated on 16/Jun/21
???????
$$??????? \\ $$
Answered by qaz last updated on 16/Jun/21
y=3z^3 +2......⇒z^6 =(1/9)(y−2)^2   x=z^2 +4.......⇒z^6 =(x−4)^3   ⇒(y−2)^2 =9(x−4)^3   ⇒2(y−2)(dy/dx)=27(x−4)^2   ⇒(dy/dx)=((27(x−4)^2 )/(2(y−2)))
$$\mathrm{y}=\mathrm{3z}^{\mathrm{3}} +\mathrm{2}……\Rightarrow\mathrm{z}^{\mathrm{6}} =\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{y}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{x}=\mathrm{z}^{\mathrm{2}} +\mathrm{4}…….\Rightarrow\mathrm{z}^{\mathrm{6}} =\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\left(\mathrm{y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{9}\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{y}−\mathrm{2}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{27}\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{27}\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{y}−\mathrm{2}\right)} \\ $$
Answered by bobhans last updated on 16/Jun/21
 (dy/dx) = (dy/dz)×(dz/dx)
$$\:\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dz}}×\frac{{dz}}{{dx}} \\ $$
Answered by mr W last updated on 16/Jun/21
(dy/dz)=9z^2   (dx/dz)=2z  ⇒(dy/dx)=((9z)/2)=((3(y−2))/(2(x−4)))
$$\frac{{dy}}{{dz}}=\mathrm{9}{z}^{\mathrm{2}} \\ $$$$\frac{{dx}}{{dz}}=\mathrm{2}{z} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{\mathrm{9}{z}}{\mathrm{2}}=\frac{\mathrm{3}\left({y}−\mathrm{2}\right)}{\mathrm{2}\left({x}−\mathrm{4}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *