Menu Close

Question-143602




Question Number 143602 by meetbhavsar25 last updated on 16/Jun/21
Commented by TheHoneyCat last updated on 16/Jun/21
Are you asking for Π_(a∈C) g(a)^(val_f (a))     or z such that  ∀(a_i )_(i∈[∣1,6∣])  Π_(i=1) ^6 g(a_i )=z     ¿    (that is to say, is each a_i  one sigle root of f or can they all be the same for instance)
AreyouaskingforaCg(a)valf(a)orzsuchthat(ai)i[1,6]6i=1g(ai)=z¿(thatistosay,iseachaionesiglerootofforcantheyallbethesameforinstance)
Answered by mr W last updated on 16/Jun/21
f(x)=(x^3 +2)(x^3 −4)=0  ⇒α_1 ^3 ,α_2 ^3 ,α_3 ^3 =−2  ⇒α_(1,2,) =−(2)^(1/3) ,−(2)^(1/3) ω,−(2)^(1/3) ω^2   ⇒α_4 ^3 ,α_5 ^3 ,α_6 ^3 =4  ⇒α_(4,5,6) =(4)^(1/3) ,(4)^(1/3) ω,(4)^(1/3) ω^2   g(x)=(x+1+i(√3))(x+1−i(√3))  g(x)=(x−2ω)(x−2ω^2 )  Π_(k=1) ^6 g(α_k )=Π_(k=1) ^6 (α_k −2ω)(α_k −2ω^2 )  =(−(2)^(1/3) −2ω)(−(2)^(1/3) −2ω^2 )  ×(−(2)^(1/3) ω−2ω)(−(2)^(1/3) ω−2ω^2 )  ×(−(2)^(1/3) ω^2 −2ω)(−(2)^(1/3) ω^2 −2ω^2 )  ×((4)^(1/3) −2ω)((4)^(1/3) −2ω^2 )  ×((4)^(1/3) ω−2ω)((4)^(1/3) ω−2ω^2 )  ×((4)^(1/3) ω^2 −2ω)((4)^(1/3) ω^2 −2ω^2 )  =((2)^(1/3) +2ω)((2)^(1/3) ω+2)((2)^(1/3) +2)^2 ((2)^(1/3) +2ω)((2)^(1/3) ω+2)  ×((4)^(1/3) −2ω)((4)^(1/3) ω−2)((4)^(1/3) −2)^2 ((4)^(1/3) −2ω)((4)^(1/3) ω−2)ω^2   =((2)^(1/3) +2ω)^2 ((2)^(1/3) ω+2)^2 ((2)^(1/3) +2)^2   ×((4)^(1/3) −2ω)^2 ((4)^(1/3) ω−2)^2 ((4)^(1/3) −2)^2 ω^2   =1600
f(x)=(x3+2)(x34)=0α13,α23,α33=2α1,2,=23,23ω,23ω2α43,α53,α63=4α4,5,6=43,43ω,43ω2g(x)=(x+1+i3)(x+1i3)g(x)=(x2ω)(x2ω2)6k=1g(αk)=6k=1(αk2ω)(αk2ω2)=(232ω)(232ω2)×(23ω2ω)(23ω2ω2)×(23ω22ω)(23ω22ω2)×(432ω)(432ω2)×(43ω2ω)(43ω2ω2)×(43ω22ω)(43ω22ω2)=(23+2ω)(23ω+2)(23+2)2(23+2ω)(23ω+2)×(432ω)(43ω2)(432)2(432ω)(43ω2)ω2=(23+2ω)2(23ω+2)2(23+2)2×(432ω)2(43ω2)2(432)2ω2=1600
Answered by ajfour last updated on 16/Jun/21
x^6 −2x^3 −8=0  and   x^2 =g−2x−4  (g−2x−4)^3 −2x(g−2x−4)=8  (g−4)^3 −8x(g−2x−4)  −6(g−4)^2 x+12(g−4)(g−2x−4)  −2(g−4)x+4(g−2x−4)−8=0  ⇒   (g−4)^3 +16(g−2x−4)  −8x(g−4)−6(g−4)^2 x  +12(g−4)^2 −24(g−4)x  −2(g−4)x+4(g−4)−8x−8  =0  ⇒ x=(((g−4)^3 +12(g−4)^2 +20(g−4)−8)/(6(g−4)^2 +34(g−4)+40))  ⇒ but  (x+1)^2 =g−3  ⇒ {(((g−4)^3 +18(g−4)^2 +54(g−4)+32)/(6(g−4)^2 +34(g−4)+40))}^2     =g−3  Πg_i ={(−4)^3 +18(−4)^2 +54(−4)+32}^2           −(−3){6(−4)^2 +34(−4)+40}^2   =16(−16+72−54+8)^2       +48(24−34+10)^2   = 1600  ★  yes sir!
x62x38=0andx2=g2x4(g2x4)32x(g2x4)=8(g4)38x(g2x4)6(g4)2x+12(g4)(g2x4)2(g4)x+4(g2x4)8=0(g4)3+16(g2x4)8x(g4)6(g4)2x+12(g4)224(g4)x2(g4)x+4(g4)8x8=0x=(g4)3+12(g4)2+20(g4)86(g4)2+34(g4)+40but(x+1)2=g3{(g4)3+18(g4)2+54(g4)+326(g4)2+34(g4)+40}2=g3Πgi={(4)3+18(4)2+54(4)+32}2(3){6(4)2+34(4)+40}2=16(16+7254+8)2+48(2434+10)2=1600yessir!
Commented by mr W last updated on 16/Jun/21
i got 1600. but my method is not as  smart.
igot1600.butmymethodisnotassmart.

Leave a Reply

Your email address will not be published. Required fields are marked *