Question-143635 Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 143635 by SOMEDAVONG last updated on 16/Jun/21 Answered by TheHoneyCat last updated on 16/Jun/21 letx∈CorRifyouwantlets=sin(x)andc=cos(x)s4+c4+s2c2=(s2)2+(c2)2+2(s2)(c2)−(sc)2=(s2+c2)−(sc)2=1−(sc)2also,c8+s8=c2c6+s2s6=(1−s2)c6+(1−c2)s6=c6+s6−s2c6−c2s6=(1−s2)c4+(1−c2)s4−c2s2(c4+s4)=c4+s4−s2c4−c2s4−c2s2(c4+s4)=(c4+s4)(1−(cs)2)−(cs)2(c2+s2)=((1−s2)c2+(1−c2)s2)(1−(cs)2)−(cs)2=(c2+s2−2(cs)2)(1−(cs)2)−(cs)2=(1−2(cs)2)(1−(cs)2)−(cs)2=1−4(cs)2+2(cs)4therefore:N=2−2(sc)2−1+4(sc)2−2(cs)4=1+2(sc)2−2(sc)4knowingthatsin.cos(x)=12sin2(2x)N=1+12sin2(2x)−18sin4(2x)(✠)=1+12sin2(2x)−18(1−cos2(2x))sin2(2x)=18(8+4sin2−sin2+(cos.sin)2)(2x)=18(8+3sin2(2x)+(12sin(4x))2)=164(64+24sin2(2x)+2sin2(4x))=164(64+12+1−12(1−sin2(2x))−(1−2sin2(4x)))=164(77−12cos(4x)−cos(8x))Wichisthe″simpliest″expression(itisitsFourriertransformation)thougthIdoprefer(✠) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: This-y-x-2-6x-12-find-the-values-of-the-function-area-Next Next post: y-x-3-3-2x-2-3x-maximum-minimum- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.