Menu Close

Question-143635




Question Number 143635 by SOMEDAVONG last updated on 16/Jun/21
Answered by TheHoneyCat last updated on 16/Jun/21
let x∈C _(or R if you want)   let s=sin(x) and c=cos(x)    s^4 +c^4 +s^2 c^2   =(s^2 )^2 +(c^2 )^2 +2(s^2 )(c^2 )−(sc)^2   =(s^2 +c^2 )−(sc)^2   =1−(sc)^2     also,  c^8 +s^8   =c^2 c^6 +s^2 s^6   =(1−s^2 )c^6 +(1−c^2 )s^6   =c^6 +s^6 −s^2 c^6 −c^2 s^6   =(1−s^2 )c^4 +(1−c^2 )s^4 −c^2 s^2 (c^4 +s^4 )  =c^4 +s^4 −s^2 c^4 −c^2 s^4 −c^2 s^2 (c^4 +s^4 )  =(c^4 +s^4 )(1−(cs)^2 )−(cs)^2 (c^2 +s^2 )  =( (1−s^2 )c^2  + (1−c^2 )s^2  )(1−(cs)^2 ) − (cs)^2   =( c^2 +s^2  −2(cs)^2  )(1−(cs)^2 ) − (cs)^2   =(1−2(cs)^2 )(1−(cs)^2 )−(cs)^2   =1−4(cs)^2 +2(cs)^4     therefore:  N=2−2(sc)^2 −1+4(sc)^2 −2(cs)^4   =1+2(sc)^2 −2(sc)^4     knowing that sin.cos(x)=(1/2)sin^2 (2x)  N=1+(1/2)sin^2 (2x)−(1/8)sin^4 (2x)( ✠)  =1+(1/2)sin^2 (2x)−(1/8)(1−cos^2 (2x))sin^2 (2x)  =(1/8)(8+4sin^2 −sin^2 +(cos.sin)^2 )(2x)  =(1/8)(8+3sin^2 (2x)+((1/2)sin(4x))^2 )  =(1/(64))(64+24sin^2 (2x)+2sin^2 (4x))  =(1/(64))(64+12+1 −12(1−sin^2 (2x)) −(1−2sin^2 (4x)))  =(1/(64))(77−12cos(4x)−cos(8x))    Wich is the ′′simpliest′′ expression _((it is its Fourrier transformation))   thougth I do prefer (✠)
letxCorRifyouwantlets=sin(x)andc=cos(x)s4+c4+s2c2=(s2)2+(c2)2+2(s2)(c2)(sc)2=(s2+c2)(sc)2=1(sc)2also,c8+s8=c2c6+s2s6=(1s2)c6+(1c2)s6=c6+s6s2c6c2s6=(1s2)c4+(1c2)s4c2s2(c4+s4)=c4+s4s2c4c2s4c2s2(c4+s4)=(c4+s4)(1(cs)2)(cs)2(c2+s2)=((1s2)c2+(1c2)s2)(1(cs)2)(cs)2=(c2+s22(cs)2)(1(cs)2)(cs)2=(12(cs)2)(1(cs)2)(cs)2=14(cs)2+2(cs)4therefore:N=22(sc)21+4(sc)22(cs)4=1+2(sc)22(sc)4knowingthatsin.cos(x)=12sin2(2x)N=1+12sin2(2x)18sin4(2x)()=1+12sin2(2x)18(1cos2(2x))sin2(2x)=18(8+4sin2sin2+(cos.sin)2)(2x)=18(8+3sin2(2x)+(12sin(4x))2)=164(64+24sin2(2x)+2sin2(4x))=164(64+12+112(1sin2(2x))(12sin2(4x)))=164(7712cos(4x)cos(8x))Wichisthesimpliestexpression(itisitsFourriertransformation)thougthIdoprefer()

Leave a Reply

Your email address will not be published. Required fields are marked *