Question Number 143666 by ajfour last updated on 16/Jun/21
Commented by ajfour last updated on 19/Jun/21
$${If}\:{the}\:{upper}\:{disc}\:{is}\:{released} \\ $$$${at}\:{angle}\:\alpha,\:{find}\:\alpha\:{such}\:{that} \\ $$$${disc}\:{loses}\:{contact}\:{with} \\ $$$${the}\:{fixed}\:{hemisphere}\:{just} \\ $$$${when}\:{it}\:{hits}\:{the}\:{ground}. \\ $$$$\left({assume}\:{friction}\:{coeff}.\:\mu\right) \\ $$
Answered by mr W last updated on 17/Jun/21
Commented by mr W last updated on 19/Jun/21
$$\varphi=\frac{{a}+{b}}{{b}}\theta \\ $$$$\frac{{d}\varphi}{{dt}}=\frac{{a}+{b}}{{b}}×\frac{{d}\theta}{{dt}}=\frac{\left({a}+{b}\right)\omega}{{b}} \\ $$$${mg}\mathrm{sin}\:\theta−{N}={m}\left({a}+{b}\right)\omega^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{N}}{{mg}}=\mathrm{sin}\:\theta−\frac{\left({a}+{b}\right)\omega^{\mathrm{2}} }{{g}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{I}\left(\frac{{d}\varphi}{{dt}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left({a}+{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} ={mg}\left({a}+{b}\right)\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mb}^{\mathrm{2}} }{\mathrm{2}}\frac{\left({a}+{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{m}\left({a}+{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{2}}={mg}\left({a}+{b}\right)\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$${I}=\frac{{mb}^{\mathrm{2}} }{\mathrm{2}}\:\left({as}\:{disc},\:{not}\:{sphere}\right) \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{4}{g}}{\mathrm{3}\left({a}+{b}\right)}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$$\frac{{N}}{{mg}}=\mathrm{sin}\:\theta−\frac{\left({a}+{b}\right)\omega^{\mathrm{2}} }{{g}}=\mathrm{0}\:\left({loss}\:{of}\:{contact}\right) \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{7}}{\mathrm{4}}\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\theta=\frac{{b}}{{a}+{b}}\:{when}\:{ball}\:{hits}\:{the}\:{ground} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{7}{b}}{\mathrm{4}\left({a}+{b}\right)} \\ $$
Answered by ajfour last updated on 18/Jun/21
$${Energy}\:{conservation} \\ $$$${mg}\left\{\left({a}+{b}\right)\mathrm{sin}\:\theta−{b}\right\} \\ $$$$\:\:=\:\frac{{mb}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${v}=\omega{b}=−\left({a}+{b}\right)\frac{{d}\theta}{{dt}} \\ $$$$\Rightarrow\:{g}\left\{\left({a}+{b}\right)\mathrm{sin}\:\theta−{b}\right\}=\frac{\mathrm{3}{b}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}} \\ $$$${N}=\mathrm{0}\:\:{when}\:{at}\:{bottom}\:\Rightarrow \\ $$$${mg}\mathrm{sin}\:\phi=\frac{{m}\omega^{\mathrm{2}} {b}^{\mathrm{2}} }{\left({a}+{b}\right)} \\ $$$$\mathrm{sin}\:\phi=\frac{{b}}{{a}+{b}} \\ $$$$\Rightarrow\:\:\omega^{\mathrm{2}} =\frac{{g}}{{b}} \\ $$$$\mathrm{sin}\:\theta=\frac{\frac{\mathrm{3}{b}}{\mathrm{4}}+{b}}{{a}+{b}}=\frac{\mathrm{7}{b}}{\mathrm{4}\left({a}+{b}\right)} \\ $$