Menu Close

Question-143709




Question Number 143709 by mnjuly1970 last updated on 17/Jun/21
Commented by mnjuly1970 last updated on 17/Jun/21
    P rove ::⇑⇑⇑
$$\:\:\:\:{P}\:{rove}\:::\Uparrow\Uparrow\Uparrow \\ $$
Commented by TheHoneyCat last updated on 17/Jun/21
1°) Proof that it is well defined  ∀x∈R_+  x≥1 ⇒ x^n ≥x  so x≥1 ⇒0< e^(−x^n ) ≤e^(−x)   also ∣cosλx∣≤1  so x≥1 ⇒ ∣e^(−x^n ) cosλx∣≤e^(−x)   knowing that ∫_1 ^(+∞) e^(−x) dx=−e<∞  ∫_0 ^(+∞) e^(−x^n ) cos(λx)dx ∈R
$$\left.\mathrm{1}°\right)\:\mathrm{Proof}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{well}\:\mathrm{defined} \\ $$$$\forall{x}\in\mathbb{R}_{+} \:{x}\geqslant\mathrm{1}\:\Rightarrow\:{x}^{{n}} \geqslant{x} \\ $$$$\mathrm{so}\:{x}\geqslant\mathrm{1}\:\Rightarrow\mathrm{0}<\:{e}^{−{x}^{{n}} } \leqslant{e}^{−{x}} \\ $$$$\mathrm{also}\:\mid\mathrm{cos}\lambda{x}\mid\leqslant\mathrm{1} \\ $$$$\mathrm{so}\:{x}\geqslant\mathrm{1}\:\Rightarrow\:\mid{e}^{−{x}^{{n}} } \mathrm{cos}\lambda{x}\mid\leqslant{e}^{−{x}} \\ $$$$\mathrm{knowing}\:\mathrm{that}\:\int_{\mathrm{1}} ^{+\infty} {e}^{−{x}} {dx}=−{e}<\infty \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{{n}} } \mathrm{cos}\left(\lambda{x}\right){dx}\:\in\mathbb{R} \\ $$
Answered by TheHoneyCat last updated on 17/Jun/21
let (a,b)∈(R_+ )^2  and l be this limit  with   ∫_0 ^(+∞) e^(−x^n ) cosλx dx  =Re(∫_0 ^(+∞) e^(−(x^n  +λix) ) dx)  =Re([((−1)/λ)e^(−x^n ) e^(−λix) ]_0 ^(+∞) −∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =Re(((−1)/λ)−∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =((−1)/λ)−Re(∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  with λ sugiciently high  =∣((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) ∣  =((nx^(n−1) )/λ)e^(−x^n ) ≤e^(−P(x))  with P some polynomial such that P(x)→_(x→+∞) +∞  e^(−P(x))  can be integrated, and is independent from λ  thus:  lim_(λ→+∞) ((−1)/λ)−Re(∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =lim_(λ→+∞) ((−1)/λ)−Re(∫_0 ^(+∞) lim_(λ→+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =0−Re(∫_0 ^(+∞) 0dx)  =0_■
$$\mathrm{let}\:\left({a},{b}\right)\in\left(\mathbb{R}_{+} \right)^{\mathrm{2}} \:\mathrm{and}\:{l}\:\mathrm{be}\:\mathrm{this}\:\mathrm{limit} \\ $$$${with}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{{n}} } \mathrm{cos}\lambda{x}\:{dx} \\ $$$$=\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} {e}^{−\left({x}^{{n}} \:+\lambda\boldsymbol{{i}}{x}\right)\:} {dx}\right) \\ $$$$=\mathrm{Re}\left(\left[\frac{−\mathrm{1}}{\lambda}{e}^{−{x}^{{n}} } {e}^{−\lambda\boldsymbol{{i}}{x}} \right]_{\mathrm{0}} ^{+\infty} −\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\mathrm{Re}\left(\frac{−\mathrm{1}}{\lambda}−\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$\mathrm{with}\:\lambda\:{sugiciently}\:{high} \\ $$$$=\mid\frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} \mid \\ $$$$=\frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } \leqslant{e}^{−\mathrm{P}\left({x}\right)} \:\mathrm{with}\:\mathrm{P}\:\mathrm{some}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that}\:\mathrm{P}\left({x}\right)\underset{{x}\rightarrow+\infty} {\rightarrow}+\infty \\ $$$${e}^{−\mathrm{P}\left({x}\right)} \:\mathrm{can}\:\mathrm{be}\:\mathrm{integrated},\:\mathrm{and}\:\mathrm{is}\:\mathrm{independent}\:\mathrm{from}\:\lambda \\ $$$$\mathrm{thus}: \\ $$$${lim}_{\lambda\rightarrow+\infty} \frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$={lim}_{\lambda\rightarrow+\infty} \frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} {lim}_{\lambda\rightarrow+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\mathrm{0}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \mathrm{0}{dx}\right) \\ $$$$=\mathrm{0}_{\blacksquare} \\ $$
Commented by mnjuly1970 last updated on 17/Jun/21
thanks alot ....
$${thanks}\:{alot}\:…. \\ $$
Commented by TheHoneyCat last updated on 17/Jun/21
your welcome :•)
$$\left.{your}\:{welcome}\::\bullet\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *