Menu Close

Question-143781




Question Number 143781 by bemath last updated on 18/Jun/21
Answered by liberty last updated on 18/Jun/21
let x+1= t⇒f(t−1)=y=(((t+9)(t+1))/t)  y=t+10+(9/t) .⇒ t+(9/t) has minimum 6 for t=3   so f(t)_(min) =3+10+(9/3)=16
letx+1=tf(t1)=y=(t+9)(t+1)ty=t+10+9t.t+9thasminimum6fort=3sof(t)min=3+10+93=16
Answered by TheHoneyCat last updated on 18/Jun/21
(df/dx)(x)=(((2x+12)(x+1)−(x^2 +12x+20))/((x+1)^2 ))  =((x^2 +2x−8)/((x+1)^2 ))  =(((x−2)(x+4))/((x+1)^2 ))  ∀x∈R_+ ((x+4)/((x+1)^2 ))>0    therefore:  x∈[0,2[ ⇒ (df/dx)(x)<0  x∈]2,+∞[ ⇒ (df/dx)(x)>0  and  (df/dx)(2)=0    so f′s minimal value on R_+  is reached for x=2    Min_R_+  f=f(2)=((12×4)/2)=24_■
dfdx(x)=(2x+12)(x+1)(x2+12x+20)(x+1)2=x2+2x8(x+1)2=(x2)(x+4)(x+1)2xR+x+4(x+1)2>0therefore:x[0,2[dfdx(x)<0x]2,+[dfdx(x)>0anddfdx(2)=0sofsminimalvalueonR+isreachedforx=2MinR+f=f(2)=12×42=24◼
Commented by abdullahoudou last updated on 18/Jun/21
you may mean 12×4/3
youmaymean12×4/3
Commented by TheHoneyCat last updated on 19/Jun/21
Of course, I had to make a mistake at the very last line. �� Yes indeed, f(2)=12x4/3=16. Thanks @abdullahoudou, for paying attention to the little details. ��
Answered by john_santu last updated on 19/Jun/21
⇔yx+y=x^2 +12x+20  ⇒x^2 +(12−y)x+20−y=0  Δ=(12−y)^2 −4(20−y)≥0  ⇒y^2 −20y+64≥0  ⇒(y−4)(y−16)≥0  ⇒y≤4 ∪ y≥ 16   then y_(min)  = 16
yx+y=x2+12x+20x2+(12y)x+20y=0Δ=(12y)24(20y)0y220y+640(y4)(y16)0y4y16thenymin=16

Leave a Reply

Your email address will not be published. Required fields are marked *