Menu Close

Question-143906




Question Number 143906 by mathdanisur last updated on 19/Jun/21
Answered by TheHoneyCat last updated on 19/Jun/21
⇔x^x −y^y =e.ln((y/x))=e(ln(y)−ln(x))  ⇔x^x +elnx=y^y +elny    so oviously {(t,t), t∈R_+ ^∗ } is part of the solutions  but are there any other    considering f: { (R_+ ^∗ ,→,R),(x, ,(x^x +elnx)) :}  if x≠y are a solution, f (x)=f(y)   thus f is not injective    but f is actualy strictly increasing  (by a painful study of the derivative)  (if anyone has a better method, please send it  I′ve had to check derivatives too far to show it here)    so it is injective (f(x)=f(y)⇒x=y)    The solutions are :  (x,y)∈{(t,t) t∈R_+ ^∗ }    the equation is equivalent to ′′x=y′′
$$\Leftrightarrow{x}^{{x}} −{y}^{{y}} ={e}.\mathrm{ln}\left(\frac{{y}}{{x}}\right)={e}\left(\mathrm{ln}\left({y}\right)−\mathrm{ln}\left({x}\right)\right) \\ $$$$\Leftrightarrow{x}^{{x}} +{e}\mathrm{ln}{x}={y}^{{y}} +{e}\mathrm{ln}{y} \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{oviously}\:\left\{\left({t},{t}\right),\:{t}\in\mathbb{R}_{+} ^{\ast} \right\}\:\mathrm{is}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solutions} \\ $$$$\mathrm{but}\:\mathrm{are}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other} \\ $$$$ \\ $$$$\mathrm{considering}\:{f}:\begin{cases}{\mathbb{R}_{+} ^{\ast} }&{\rightarrow}&{\mathbb{R}}\\{{x}}&{ }&{{x}^{{x}} +{e}\mathrm{ln}{x}}\end{cases} \\ $$$$\mathrm{if}\:{x}\neq{y}\:\mathrm{are}\:\mathrm{a}\:\mathrm{solution},\:{f}\:\left({x}\right)={f}\left({y}\right)\: \\ $$$$\mathrm{thus}\:{f}\:\mathrm{is}\:\mathrm{not}\:\mathrm{injective} \\ $$$$ \\ $$$$\mathrm{but}\:{f}\:\mathrm{is}\:\mathrm{actualy}\:\mathrm{strictly}\:\mathrm{increasing} \\ $$$$\left({by}\:{a}\:{painful}\:{study}\:{of}\:{the}\:{derivative}\right) \\ $$$$\left({if}\:{anyone}\:{has}\:{a}\:{better}\:{method},\:{please}\:{send}\:{it}\right. \\ $$$$\left.{I}'{ve}\:{had}\:{to}\:{check}\:{derivatives}\:{too}\:{far}\:{to}\:{show}\:{it}\:{here}\right) \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{it}\:\mathrm{is}\:\mathrm{injective}\:\left({f}\left({x}\right)={f}\left({y}\right)\Rightarrow{x}={y}\right) \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{solutions}\:\mathrm{are}\:: \\ $$$$\left({x},{y}\right)\in\left\{\left({t},{t}\right)\:{t}\in\mathbb{R}_{+} ^{\ast} \right\} \\ $$$$ \\ $$$${the}\:{equation}\:{is}\:{equivalent}\:{to}\:''{x}={y}'' \\ $$
Commented by mathdanisur last updated on 19/Jun/21
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *