Menu Close

Question-143980




Question Number 143980 by mathdanisur last updated on 20/Jun/21
Answered by mitica last updated on 20/Jun/21
p=a+b+c;q=ab+bc+ac;r=abc⇒q^2 ≥3pr  3Σ(a/b)−Σ((3a+b+c)/(b+c))=3Σ((a/b)−(a/(b+c)))−3=  3Σ((ac)/(b(b+c)))−3=(3/(abc))Σ(((ac)^2 )/(b+c))−3≥  (3/r)∙(q^2 /(2p))−3≥((3∙3pr)/(2pr))−3=(3/2)>0⇒  3((a/b)+(b/c)+(c/a))≥((3a+b+c)/(b+c))+((a+3b+c)/(a+c))+((a+b+3c)/(a+b))+(3/2)
$${p}={a}+{b}+{c};{q}={ab}+{bc}+{ac};{r}={abc}\Rightarrow{q}^{\mathrm{2}} \geqslant\mathrm{3}{pr} \\ $$$$\mathrm{3}\Sigma\frac{{a}}{{b}}−\Sigma\frac{\mathrm{3}{a}+{b}+{c}}{{b}+{c}}=\mathrm{3}\Sigma\left(\frac{{a}}{{b}}−\frac{{a}}{{b}+{c}}\right)−\mathrm{3}= \\ $$$$\mathrm{3}\Sigma\frac{{ac}}{{b}\left({b}+{c}\right)}−\mathrm{3}=\frac{\mathrm{3}}{{abc}}\Sigma\frac{\left({ac}\right)^{\mathrm{2}} }{{b}+{c}}−\mathrm{3}\geqslant \\ $$$$\frac{\mathrm{3}}{{r}}\centerdot\frac{{q}^{\mathrm{2}} }{\mathrm{2}{p}}−\mathrm{3}\geqslant\frac{\mathrm{3}\centerdot\mathrm{3}{pr}}{\mathrm{2}{pr}}−\mathrm{3}=\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{0}\Rightarrow \\ $$$$\mathrm{3}\left(\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}\right)\geqslant\frac{\mathrm{3}{a}+{b}+{c}}{{b}+{c}}+\frac{{a}+\mathrm{3}{b}+{c}}{{a}+{c}}+\frac{{a}+{b}+\mathrm{3}{c}}{{a}+{b}}+\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by mathdanisur last updated on 20/Jun/21
Cool sir thanks but p,q,r what it means?
$${Cool}\:{sir}\:{thanks}\:{but}\:{p},{q},{r}\:{what}\:{it}\:{means}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *