Menu Close

Question-144031




Question Number 144031 by mathdanisur last updated on 20/Jun/21
Answered by mindispower last updated on 20/Jun/21
(1/(sin(2^k )))+(1/(tg(2^k )))=((1+cos(2k))/(sin(2k)))=(1/(tg(2^(k−1) )))  (1/(sin(2^k )))=(1/(tg(2^(k−1) )))−(1/(tg(2^k )))  Σ_(k=1) ^n (1/(sin(2^k )))=(1/(tg(1)))−−(1/(tg(2^n )))
$$\frac{\mathrm{1}}{{sin}\left(\mathrm{2}^{{k}} \right)}+\frac{\mathrm{1}}{{tg}\left(\mathrm{2}^{{k}} \right)}=\frac{\mathrm{1}+{cos}\left(\mathrm{2}{k}\right)}{{sin}\left(\mathrm{2}{k}\right)}=\frac{\mathrm{1}}{{tg}\left(\mathrm{2}^{{k}−\mathrm{1}} \right)} \\ $$$$\frac{\mathrm{1}}{{sin}\left(\mathrm{2}^{{k}} \right)}=\frac{\mathrm{1}}{{tg}\left(\mathrm{2}^{{k}−\mathrm{1}} \right)}−\frac{\mathrm{1}}{{tg}\left(\mathrm{2}^{{k}} \right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{sin}\left(\mathrm{2}^{{k}} \right)}=\frac{\mathrm{1}}{{tg}\left(\mathrm{1}\right)}−−\frac{\mathrm{1}}{{tg}\left(\mathrm{2}^{{n}} \right)} \\ $$
Commented by mathdanisur last updated on 22/Jun/21
Thanks Sir cool
$${Thanks}\:{Sir}\:{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *