Question Number 144059 by 0731619 last updated on 21/Jun/21
Answered by Olaf_Thorendsen last updated on 21/Jun/21
$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{sin}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} {x}+{a}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{tan}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} {x}}}\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{tan}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}\right)}\:{dx} \\ $$$$\mathrm{Let}\:{t}\:=\:\mathrm{tan}{x} \\ $$$$\mathrm{F}\left({t}\right)\:=\:\int\frac{{t}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}.\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\mathrm{F}\left({t}\right)\:=\:\int\left(\frac{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt} \\ $$$$\mathrm{F}\left({t}\right)\:=\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }\int\frac{{dt}}{{t}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\mathrm{F}\left({t}\right)\:=\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\:\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}\mathrm{arctan}\frac{{t}}{\:\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}\right) \\ $$$$−\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\mathrm{arctan}{t}+\mathrm{C} \\ $$$$\mathrm{F}\left({t}\right)\:=\:\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{ab}^{\mathrm{2}} }\mathrm{arctan}\left(\frac{{at}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)−\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\mathrm{arctan}{t}+\mathrm{C} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{ab}^{\mathrm{2}} }\mathrm{arctan}\left(\frac{{a}.\mathrm{tan}{x}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)−\frac{{x}}{{b}^{\mathrm{2}} }+\mathrm{C} \\ $$
Commented by 0731619 last updated on 21/Jun/21
$${thanks} \\ $$