Menu Close

Question-1468




Question Number 1468 by havandip last updated on 11/Aug/15
$$ \\ $$
Answered by 123456 last updated on 11/Aug/15
lim_(x→−∞)  f(x)=L  ∀ε>0,∃M∈R,∀x<M,∣f(x)−L∣<ε
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{L} \\ $$$$\forall\epsilon>\mathrm{0},\exists\mathrm{M}\in\mathbb{R},\forall{x}<\mathrm{M},\mid{f}\left({x}\right)−\mathrm{L}\mid<\epsilon \\ $$
Commented by 123456 last updated on 11/Aug/15
lim_(x→0)  ((a^x −1)/x)=ln a
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\mathrm{ln}\:{a} \\ $$
Commented by 123456 last updated on 11/Aug/15
a>1  x<M<0⇒(1/M)<(1/x)<0  a^x <a^M ⇒a^x −1<a^M −1  ((a^x −1)/x)>((a^M −1)/x)>((a^M −1)/M)  ((a^x −1)/x)>((a^x −1)/M)>((a^M −1)/M)  0<((a^x −1)/x)<((a^M −1)/M)
$${a}>\mathrm{1} \\ $$$${x}<\mathrm{M}<\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\mathrm{M}}<\frac{\mathrm{1}}{{x}}<\mathrm{0} \\ $$$${a}^{{x}} <{a}^{\mathrm{M}} \Rightarrow{a}^{{x}} −\mathrm{1}<{a}^{\mathrm{M}} −\mathrm{1} \\ $$$$\frac{{a}^{{x}} −\mathrm{1}}{{x}}>\frac{{a}^{\mathrm{M}} −\mathrm{1}}{{x}}>\frac{{a}^{\mathrm{M}} −\mathrm{1}}{\mathrm{M}} \\ $$$$\frac{{a}^{{x}} −\mathrm{1}}{{x}}>\frac{{a}^{{x}} −\mathrm{1}}{\mathrm{M}}>\frac{{a}^{\mathrm{M}} −\mathrm{1}}{\mathrm{M}} \\ $$$$\mathrm{0}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\frac{{a}^{\mathrm{M}} −\mathrm{1}}{\mathrm{M}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *