Menu Close

Question-1763




Question Number 1763 by Gerlândio Almeida last updated on 18/Sep/15
$$ \\ $$
Commented by 123456 last updated on 18/Sep/15
p_0 (n)=xn  r(n)=αxn  p_1 (n)=p_0 (n)−r(n)=(1−α)xn  r(n)≥p_0 (m)  αxn≥xm            x>0  n≥(m/α)                    α>0  p_0 (n)≥((xm)/α)  r_0 (n)≥xm  p_1 (n)≥(((1−α)xm)/α)  (n,m)∈Z^2   α\m   1      2       3        4         5  0,20    5     10    15      20      25  0,35    3      6       9       12      15  0,50    2      4       6        8        10
$${p}_{\mathrm{0}} \left({n}\right)={xn} \\ $$$${r}\left({n}\right)=\alpha{xn} \\ $$$${p}_{\mathrm{1}} \left({n}\right)={p}_{\mathrm{0}} \left({n}\right)−{r}\left({n}\right)=\left(\mathrm{1}−\alpha\right){xn} \\ $$$${r}\left({n}\right)\geqslant{p}_{\mathrm{0}} \left({m}\right) \\ $$$$\alpha{xn}\geqslant{xm}\:\:\:\:\:\:\:\:\:\:\:\:{x}>\mathrm{0} \\ $$$${n}\geqslant\frac{{m}}{\alpha}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha>\mathrm{0} \\ $$$${p}_{\mathrm{0}} \left({n}\right)\geqslant\frac{{xm}}{\alpha} \\ $$$${r}_{\mathrm{0}} \left({n}\right)\geqslant{xm} \\ $$$${p}_{\mathrm{1}} \left({n}\right)\geqslant\frac{\left(\mathrm{1}−\alpha\right){xm}}{\alpha} \\ $$$$\left({n},{m}\right)\in\mathbb{Z}^{\mathrm{2}} \\ $$$$\alpha\backslash{m}\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{0},\mathrm{20}\:\:\:\:\mathrm{5}\:\:\:\:\:\mathrm{10}\:\:\:\:\mathrm{15}\:\:\:\:\:\:\mathrm{20}\:\:\:\:\:\:\mathrm{25} \\ $$$$\mathrm{0},\mathrm{35}\:\:\:\:\mathrm{3}\:\:\:\:\:\:\mathrm{6}\:\:\:\:\:\:\:\mathrm{9}\:\:\:\:\:\:\:\mathrm{12}\:\:\:\:\:\:\mathrm{15} \\ $$$$\mathrm{0},\mathrm{50}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\mathrm{6}\:\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\:\:\mathrm{10} \\ $$
Answered by 123456 last updated on 18/Sep/15
Σ_(n=0) ^∞ x^n =(1/(1−x))  Π_(p∈P) (1/(1−p^(−s) ))=Π_(p∈P) Σ_(n=0) ^∞ p^(−sn) =Σ_(n=1) ^∞ n^(−s) ,s>1
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\underset{{p}\in\mathbb{P}} {\prod}\frac{\mathrm{1}}{\mathrm{1}−{p}^{−{s}} }=\underset{{p}\in\mathbb{P}} {\prod}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{p}^{−{sn}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{s}} ,{s}>\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *