Menu Close

Question-1763




Question Number 1763 by Gerlândio Almeida last updated on 18/Sep/15
Commented by 123456 last updated on 18/Sep/15
p_0 (n)=xn  r(n)=αxn  p_1 (n)=p_0 (n)−r(n)=(1−α)xn  r(n)≥p_0 (m)  αxn≥xm            x>0  n≥(m/α)                    α>0  p_0 (n)≥((xm)/α)  r_0 (n)≥xm  p_1 (n)≥(((1−α)xm)/α)  (n,m)∈Z^2   α\m   1      2       3        4         5  0,20    5     10    15      20      25  0,35    3      6       9       12      15  0,50    2      4       6        8        10
p0(n)=xnr(n)=αxnp1(n)=p0(n)r(n)=(1α)xnr(n)p0(m)αxnxmx>0nmαα>0p0(n)xmαr0(n)xmp1(n)(1α)xmα(n,m)Z2αm123450,205101520250,3536912150,50246810
Answered by 123456 last updated on 18/Sep/15
Σ_(n=0) ^∞ x^n =(1/(1−x))  Π_(p∈P) (1/(1−p^(−s) ))=Π_(p∈P) Σ_(n=0) ^∞ p^(−sn) =Σ_(n=1) ^∞ n^(−s) ,s>1
n=0xn=11xpP11ps=pPn=0psn=n=1ns,s>1

Leave a Reply

Your email address will not be published. Required fields are marked *