Menu Close

Question-208




Question Number 208 by 02@>@0 last updated on 25/Jan/15
Answered by 123456 last updated on 16/Dec/14
Random things LOl I  lets f:[0∣1]→R be a integable and continuos function  define ∥f∥ be [0∣1]→R^+  where  ∥f∥=(√(∫_0 ^1 f^2 dx))  wich we easy can check that  ∥cf∥=∣c∣∥f∥  ∥f∥≥0  then if ∥f∥≠0, exist a vesor function given by  f^� =(f/(∥f∥))
RandomthingsLOlIletsf:[01]Rbeaintegableandcontinuosfunctiondefinefbe[01]R+wheref∥=10f2dxwichweeasycancheckthatcf∥=∣c∣∥ff∥⩾0theniff∥≠0,existavesorfunctiongivenbyf^=ff
Answered by 123456 last updated on 24/Dec/14
f_n (x)=((x(x+1)∙∙∙(x+n))/(x(x−1)∙∙∙(x−n))),n∈N  f=lim_(n→∞) f_n (x)=?  R→R  z={−1,−2,...,−n}  p={0,+1,+2,...,+n}  f:N×(R/p)→R  f: n×      x    →f
fn(x)=x(x+1)(x+n)x(x1)(xn),nNf=limnfn(x)=?RRz={1,2,,n}p={0,+1,+2,,+n}f:N×(R/p)Rf:n×xf