Menu Close

Question-5705




Question Number 5705 by sanusihammed last updated on 24/May/16
Answered by FilupSmith last updated on 24/May/16
question (b)  from previous answer in other post,  limit can be simplified to:  L=lim_(x→∞)  ((3^(2x) −1)/(3^(2x) +1))  L=lim_(x→∞)  ((3^(2x) −1)/(3^(2x) +1))×(3^(−2x) /3^(−2x) )  L=lim_(x→∞)  ((1−3^(−2x) )/(1+3^(−2x) ))  L=((1−0)/(1−0))  ∴L=1
$${question}\:\left({b}\right) \\ $$$$\mathrm{from}\:\mathrm{previous}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{other}\:\mathrm{post}, \\ $$$$\mathrm{limit}\:\mathrm{can}\:\mathrm{be}\:\mathrm{simplified}\:\mathrm{to}: \\ $$$${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}}×\frac{\mathrm{3}^{−\mathrm{2}{x}} }{\mathrm{3}^{−\mathrm{2}{x}} } \\ $$$${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{3}^{−\mathrm{2}{x}} }{\mathrm{1}+\mathrm{3}^{−\mathrm{2}{x}} } \\ $$$${L}=\frac{\mathrm{1}−\mathrm{0}}{\mathrm{1}−\mathrm{0}} \\ $$$$\therefore{L}=\mathrm{1} \\ $$
Commented by sanusihammed last updated on 24/May/16
Thanks so much.
$${Thanks}\:{so}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *