Question Number 6217 by Rasheed Soomro last updated on 18/Jun/16
Commented by Rasheed Soomro last updated on 22/Jun/16
$$\mid{FJ}\mid=? \\ $$
Commented by sandy_suhendra last updated on 22/Jun/16
$${G}\:{is}\:{on}\:{line}\:{AB}\:{and}\:{FG}\bot{AB} \\ $$
Answered by sandy_suhendra last updated on 22/Jun/16
$${BI}={a}\:\rightarrow{HI}={FI}=\frac{\mathrm{3}}{\mathrm{4}}{x}+{a} \\ $$$${FC}={GB}=\frac{\mathrm{1}}{\mathrm{4}}{x}\:\rightarrow\:{GI}=\frac{\mathrm{1}}{\mathrm{4}}{x}+{a} \\ $$$${FG}^{\mathrm{2}} +{GI}^{\mathrm{2}} ={FI}^{\mathrm{2}} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{4}}{x}+{a}\right)^{\mathrm{2}} =\left(\frac{\mathrm{3}}{\mathrm{4}}{x}+{a}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{16}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{ax}+{a}^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{16}}{x}^{\mathrm{2}} +\mathrm{1}\frac{\mathrm{1}}{\mathrm{2}}{ax}+{a}^{\mathrm{2}} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} ={ax} \\ $$$$\Leftrightarrow\:{a}=\frac{\mathrm{1}}{\mathrm{2}}{x} \\ $$$$\bigtriangleup{FCJ}\sim\bigtriangleup{JBI}\:\rightarrow\:\frac{{CJ}}{{JB}}=\:\frac{{FJ}}{{JI}}=\frac{{FC}}{{BI}}=\frac{\frac{\mathrm{1}}{\mathrm{4}}{x}}{\frac{\mathrm{1}}{\mathrm{2}}{x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${CJ}=\frac{\mathrm{1}}{\mathrm{3}}{CB}=\frac{\mathrm{1}}{\mathrm{3}}{x} \\ $$$${FJ}=\frac{\mathrm{1}}{\mathrm{3}}{FI}=\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{\mathrm{3}}{\mathrm{4}}{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}\right]=\frac{\mathrm{5}}{\mathrm{12}}{x} \\ $$
Commented by Rasheed Soomro last updated on 23/Jun/16
$$\mathcal{NICE}! \\ $$$$\mathcal{E}{ven}\:{better}\:{if}\:{reasoning}\:{for}\:\bigtriangleup{FCJ}\sim\bigtriangleup{JBI} \\ $$$${be}\:{included}\:\left({for}\:{perfectness}\:{only}\right). \\ $$