Question Number 6289 by sanusihammed last updated on 22/Jun/16
Commented by FilupSmith last updated on 22/Jun/16
$${a}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{6}}+…+\frac{\mathrm{2015}}{\mathrm{2016}} \\ $$$${b}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{4}}{\mathrm{6}}×…×\frac{\mathrm{2015}}{\mathrm{2016}} \\ $$$$\frac{{a}}{{b}}+\frac{{b}}{{a}}=?? \\ $$$$ \\ $$$${a}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}\right)=\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$$$=\mathrm{1008}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{1}}{{n}} \\ $$$${H}_{{k}} =\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${a}=\mathrm{1008}−\frac{\mathrm{1}}{\mathrm{2}}{H}_{\mathrm{1008}} \\ $$$$ \\ $$$${b}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$$${b}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{{n}}\right) \\ $$$${b}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{1008}!}\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$$${continue} \\ $$
Commented by Rasheed Soomro last updated on 22/Jun/16
$${b}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{5}}{\mathrm{6}}×\frac{\mathrm{7}}{\mathrm{8}}×….×\frac{\mathrm{2015}}{\mathrm{2016}} \\ $$$${b}=\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}×\mathrm{7}×…×\mathrm{2015}}{\mathrm{2}×\mathrm{4}×\mathrm{6}×…×\mathrm{2016}} \\ $$$$=\frac{\mathrm{2015}!/\left(\mathrm{2}×\mathrm{4}×\mathrm{6}×…×\mathrm{2014}\right)}{\mathrm{2}^{\mathrm{1008}} \left(\mathrm{1}×\mathrm{2}×\mathrm{3}×…×\mathrm{1008}\right)} \\ $$$$=\frac{\mathrm{2015}!}{\mathrm{2}^{\mathrm{1008}} ×\mathrm{1008}!×\left(\mathrm{2}×\mathrm{4}×\mathrm{6}×…×\mathrm{2014}\right)} \\ $$$$=\frac{\mathrm{2015}!}{\mathrm{2}^{\mathrm{1008}} ×\mathrm{1008}!×\mathrm{2}^{\mathrm{2014}/\mathrm{2}} \left(\mathrm{1}×\mathrm{2}×\mathrm{3}×…×\mathrm{1007}\right)} \\ $$$$=\frac{\mathrm{2015}!}{\mathrm{2}^{\mathrm{1008}} ×\mathrm{1008}!×\mathrm{2}^{\mathrm{1007}} \left(\mathrm{1}×\mathrm{2}×\mathrm{3}×…×\mathrm{1007}\right)} \\ $$$$=\frac{\mathrm{2015}!}{\mathrm{2}^{\mathrm{2015}} ×\mathrm{1008}!×\mathrm{1007}!} \\ $$$$ \\ $$
Commented by Yozzii last updated on 22/Jun/16
$${a}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}},\:{b}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)}{\left(\mathrm{2}{n}\right)} \\ $$$$\frac{{a}}{{b}}=\frac{\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\mathrm{2}{n}\right)}{\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\mathrm{2}{n}−\mathrm{1}\right)}\underset{{n}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}} \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${u}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${l}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\therefore\:\frac{{u}}{{l}}=\frac{\mathrm{2}×\mathrm{4}×\mathrm{6}}{\mathrm{1}×\mathrm{3}×\mathrm{5}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{6}}\right) \\ $$$$\frac{{u}}{{l}}=\frac{\mathrm{4}×\mathrm{6}}{\mathrm{3}×\mathrm{5}}+\frac{\mathrm{2}×\mathrm{6}}{\mathrm{1}×\mathrm{5}}+\frac{\mathrm{2}×\mathrm{4}}{\mathrm{1}×\mathrm{3}} \\ $$$$\frac{{l}}{{u}}=\frac{\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}}{\mathrm{2}×\mathrm{4}×\mathrm{6}}}{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{6}}}=\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}}{\mathrm{4}×\mathrm{6}+\mathrm{3}×\mathrm{2}×\mathrm{6}+\mathrm{5}×\mathrm{2}×\mathrm{4}} \\ $$$$\therefore\:\frac{{u}}{{l}}+\frac{{l}}{{u}}=\frac{\mathrm{4}×\mathrm{6}}{\mathrm{3}×\mathrm{5}}+\frac{\mathrm{2}×\mathrm{6}}{\mathrm{1}×\mathrm{5}}+\frac{\mathrm{2}×\mathrm{4}}{\mathrm{1}×\mathrm{3}}+\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}}{\mathrm{2}^{\mathrm{2}} ×\left(\mathrm{2}×\mathrm{5}+\mathrm{3}×\mathrm{3}+\mathrm{1}×\mathrm{6}\right)} \\ $$$$ \\ $$
Commented by Yozzii last updated on 22/Jun/16
$${n}=\frac{{a}}{{b}}\Rightarrow{r}=\frac{{a}}{{b}}+\frac{{b}}{{a}}={n}+\frac{\mathrm{1}}{{n}}=\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}} \\ $$$${a}=\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}} \\ $$$${b}=\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}} \\ $$$$\frac{{a}}{{b}}=\left(\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\frac{\mathrm{2}{i}}{\mathrm{2}{i}−\mathrm{1}}\right)\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\mathrm{2}{i}=\mathrm{2}^{\mathrm{1008}} \mathrm{1008}! \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\prod}}\left(\mathrm{2}{i}−\mathrm{1}\right)=\frac{\mathrm{2016}!}{\mathrm{2}×\mathrm{4}×\mathrm{6}×\mathrm{8}×…×\mathrm{2016}}=\frac{\mathrm{2016}!}{\mathrm{2}^{\mathrm{1008}} \mathrm{1008}!} \\ $$$$\frac{{a}}{{b}}=\left(\frac{\mathrm{2}^{\mathrm{2016}} \left(\mathrm{1008}!\right)^{\mathrm{2}} }{\mathrm{2016}!}\right)\underset{{i}=\mathrm{1}} {\overset{\mathrm{1008}} {\sum}}\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}} \\ $$$$\frac{{a}}{{b}}=\left(\mathrm{1008}!\right)^{\mathrm{2}} \left(\mathrm{2016}!\right)^{−\mathrm{1}} \mathrm{2}^{\mathrm{2015}} \left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{3}}+\frac{\mathrm{7}}{\mathrm{4}}+\frac{\mathrm{9}}{\mathrm{5}}+\frac{\mathrm{11}}{\mathrm{6}}+…+\frac{\mathrm{2015}}{\mathrm{1008}}\right) \\ $$$${u}=\left(\mathrm{1}+\frac{\mathrm{0}}{\mathrm{1}}\right)+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)+\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}\right)+\left(\mathrm{1}+\frac{\mathrm{4}}{\mathrm{5}}\right)+\left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{6}}\right)+…+\left(\mathrm{1}+\frac{\mathrm{1007}}{\mathrm{1008}}\right) \\ $$$${u}=\mathrm{1008}+\underset{{i}=\mathrm{1}} {\overset{\mathrm{1007}} {\sum}}\left(\mathrm{1}−\frac{\mathrm{1}}{{i}+\mathrm{1}}\right)=\mathrm{2016}−{H}\left(\mathrm{1008}\right) \\ $$$${n}=\left(\mathrm{1008}!\right)^{\mathrm{2}} \frac{\mathrm{2}^{\mathrm{2015}} }{\mathrm{2016}!}\left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right) \\ $$$${r}=\frac{\left(\mathrm{1008}!\right)^{\mathrm{4}} \frac{\mathrm{2}^{\mathrm{4030}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)^{\mathrm{2}} }{\left(\mathrm{2016}!\right)^{\mathrm{2}} }+\mathrm{1}}{\frac{\left(\mathrm{1008}!\right)^{\mathrm{2}} \mathrm{2}^{\mathrm{2015}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)}{\mathrm{2016}!}} \\ $$$${r}=\frac{\left(\mathrm{1008}!\right)^{\mathrm{4}} \mathrm{2}^{\mathrm{4030}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)^{\mathrm{2}} +\left(\mathrm{2016}!\right)^{\mathrm{2}} }{\mathrm{2016}!\left(\mathrm{1008}!\right)^{\mathrm{2}} \mathrm{2}^{\mathrm{2015}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)} \\ $$$${r}=\frac{\left(\mathrm{1008}!\right)^{\mathrm{2}} \mathrm{2}^{\mathrm{4030}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)^{\mathrm{2}} +\left(\frac{\mathrm{2016}!}{\mathrm{1008}!}\right)^{\mathrm{2}} }{\mathrm{2016}!\mathrm{2}^{\mathrm{2015}} \left(\mathrm{2016}−{H}\left(\mathrm{1008}\right)\right)} \\ $$$${r}\approx\mathrm{56520}.\mathrm{02}\:\left({used}\:{Wolfram}\:{to}\:{calculate}\:{answer}\right) \\ $$
Commented by FilupSmith last updated on 22/Jun/16
$$\mathrm{nice}\:\mathrm{work}\:\mathrm{guys}! \\ $$
Commented by sanusihammed last updated on 22/Jun/16
$${Thanks}\:{so}\:{much}\:{but}\:{what}\:{is}\:{the}\:{meaning}\:{of}\:{H} \\ $$
Commented by Yozzii last updated on 22/Jun/16
$${H}\left({n}\right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{{n}−\mathrm{1}}+\frac{\mathrm{1}}{{n}} \\ $$$${Harmonic}\:{series}\:{partial}\:{sum} \\ $$
Commented by FilupSmith last updated on 23/Jun/16
$$\mathrm{Yozzie}\:\mathrm{uses}\:{H}\left({n}\right)\:\mathrm{notation}\:\mathrm{whereas} \\ $$$$\mathrm{I}\:\mathrm{use}\:{H}_{{n}} \:\mathrm{notation}.\:\mathrm{Both}\:\mathrm{represent}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{thing}. \\ $$