Question Number 65680 by bshahid010@gmail.com last updated on 01/Aug/19
Answered by mr W last updated on 02/Aug/19
Commented by mr W last updated on 02/Aug/19
$${a}^{\mathrm{2}} =\left(\mathrm{1}−{t}\right)^{\mathrm{2}} +{p}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} =\left(\mathrm{1}−{p}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} =\left(\mathrm{1}−{q}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} \\ $$$${d}^{\mathrm{2}} =\left(\mathrm{1}−{s}\right)^{\mathrm{2}} +{t}^{\mathrm{2}} \\ $$$${S}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} ={p}^{\mathrm{2}} +\left(\mathrm{1}−{p}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} +\left(\mathrm{1}−{q}^{\mathrm{2}} \right)+{s}^{\mathrm{2}} +\left(\mathrm{1}−{s}\right)^{\mathrm{2}} +{t}^{\mathrm{2}} +\left(\mathrm{1}−{t}\right)^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} +\left(\mathrm{1}−{p}\right)^{\mathrm{2}} =\mathrm{2}\left({p}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\left({at}\:{p}=\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${p}^{\mathrm{2}} +\left(\mathrm{1}−{p}\right)^{\mathrm{2}} =\mathrm{2}\left({p}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\leqslant\mathrm{1}\:\:\:\left({at}\:{p}=\mathrm{0}\:{or}\:\mathrm{1}\right) \\ $$$$\Rightarrow{S}\geqslant\mathrm{4}×\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{2} \\ $$$$\Rightarrow{S}\leqslant\mathrm{4}×\mathrm{1}=\mathrm{4} \\ $$$$ \\ $$$${i}.{e}.\:\mathrm{2}\leqslant{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \leqslant\mathrm{4} \\ $$