Question Number 65858 by ugwu Kingsley last updated on 05/Aug/19
Commented by mathmax by abdo last updated on 05/Aug/19
$${x}+\mathrm{2}{y}^{'} \:+{y}\:=\left({x}+\mathrm{2}\right)^{\mathrm{3}} \:\Rightarrow\mathrm{2}{y}^{'} \:+{y}\:=\left({x}+\mathrm{2}\right)^{\mathrm{3}} −{x}\:\Rightarrow \\ $$$$\mathrm{2}{y}^{'} \:+{y}\:={x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{2}\right)\:+\mathrm{3}{x}\left(\mathrm{2}\right)^{\mathrm{2}} \:+\mathrm{2}^{\mathrm{3}} −{x}\:\Rightarrow\mathrm{2}{y}^{'} \:+{y}\:={x}^{\mathrm{3}} \:+\mathrm{6}{x}^{\mathrm{2}} \:+\mathrm{11}{x}+\mathrm{8}\left({e}\right) \\ $$$$\left({he}\right)\:\rightarrow\mathrm{2}{y}^{'} \:+{y}\:=\mathrm{0}\Rightarrow\mathrm{2}{y}^{'} \:=−{y}\:\Rightarrow\frac{{y}^{'} }{{y}}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{ln}\mid{y}\mid\:=−\frac{{x}}{\mathrm{2}}\:+\lambda\:\Rightarrow \\ $$$${y}=\:{Ke}^{−\frac{{x}}{\mathrm{2}}} \:{let}\:{use}\:{mvc}\:{method}\:\:{we}\:{have}\:{y}^{'} \:={K}^{'\:} {e}^{−\frac{{x}}{\mathrm{2}}} \:−\frac{{K}}{\mathrm{2}}{e}^{−\frac{{x}}{\mathrm{2}}} \\ $$$$\left({e}\right)\Rightarrow\mathrm{2}{K}^{'} \:{e}^{−\frac{{x}}{\mathrm{2}}} −{Ke}^{−\frac{{x}}{\mathrm{2}}} \:+{Ke}^{−\frac{{x}}{\mathrm{2}}} \:={x}^{\mathrm{3}} \:+\mathrm{6}{x}^{\mathrm{2}} \:+\mathrm{11}{x}\:+\mathrm{8}\:\Rightarrow \\ $$$${K}^{'} \:=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{3}} \:+\mathrm{6}{x}^{\mathrm{2}} \:+\mathrm{11}{x}+\mathrm{8}\right){e}^{\frac{{x}}{\mathrm{2}}} \:\:\Rightarrow{K}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\int\left({x}^{\mathrm{3}} \:+\mathrm{6}{x}^{\mathrm{2}} \:+\mathrm{11}{x}+\mathrm{8}\right){e}^{\frac{{x}}{\mathrm{2}}} {dx}\:+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:{x}^{\mathrm{3}} \:{e}^{\frac{{x}}{\mathrm{2}}} {dx}\:+\mathrm{3}\:\int\:{x}^{\mathrm{2}} \:{e}^{\frac{{x}}{\mathrm{2}}} {dx}\:+\frac{\mathrm{11}}{\mathrm{2}}\int\:{xe}^{\frac{{x}}{\mathrm{2}}} {dx}\:+\mathrm{4}\:\int\:{e}^{\frac{{x}}{\mathrm{2}}} {dx}+{c} \\ $$$${by}\:{parts}\:\:\int\:{x}^{\mathrm{3}} \:{e}^{\frac{{x}}{\mathrm{2}}} \:{dx}\:=\mathrm{2}{x}^{\mathrm{3}} {e}^{\frac{{x}}{\mathrm{2}}} \:−\int\:\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right){dx} \\ $$$$=\mathrm{2}{x}^{\mathrm{3}} \:{e}^{\frac{{x}}{\mathrm{2}}} −\mathrm{6}\:\int{x}^{\mathrm{2}} {e}^{\frac{{x}}{\mathrm{2}}} {dx}\:{and}\:\int\:{x}^{\mathrm{2}} \:{e}^{\frac{{x}}{\mathrm{2}}} {dx}\:={x}^{\mathrm{2}} \left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right)−\int\mathrm{2}{x}\left({e}^{\frac{{x}}{\mathrm{2}}} \right){dx} \\ $$$$=\mathrm{2}{x}^{\mathrm{2}} {e}^{\frac{{x}}{\mathrm{2}}} \:−\mathrm{2}\:\int\:{xe}^{\frac{{x}}{\mathrm{2}}} {dx} \\ $$$$\int\:{x}\:{e}^{\frac{{x}}{\mathrm{2}}} {dx}\:={x}\left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right)−\int\:\left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right){dx}\:=\mathrm{2}{x}\:{e}^{\frac{{x}}{\mathrm{2}}} −\mathrm{2}\:\int\:{e}^{\frac{{x}}{\mathrm{2}}} {dx} \\ $$$$=\mathrm{2}{xe}^{\frac{{x}}{\mathrm{2}}} −\mathrm{2}\left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right)\:=\mathrm{2}{xe}^{\frac{{x}}{\mathrm{2}}} −\mathrm{4}\:{e}^{\frac{{x}}{\mathrm{2}\:}} \:\Rightarrow \\ $$$$\int\:{x}^{\mathrm{3}} \:{e}^{\frac{{x}}{\mathrm{2}}} {dx}\:=\mathrm{2}{x}^{\mathrm{3}} {e}^{\frac{{x}}{\mathrm{2}}} −\mathrm{6}\left(\mathrm{2}{x}^{\mathrm{2}} {e}^{\frac{{x}}{\mathrm{2}}} −\mathrm{2}\left(\mathrm{2}{xe}^{\frac{{x}}{\mathrm{2}}} −\mathrm{4}\:{e}^{\frac{{x}}{\mathrm{2}}} \right)\right) \\ $$$$=\left\{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} \:+\mathrm{24}{x}−\mathrm{48}\right\}{e}^{\frac{{x}}{\mathrm{2}}} \:\Rightarrow \\ $$$${K}\left({x}\right)\:=\left\{{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} \:+\mathrm{12}{x}−\mathrm{24}\right\}{e}^{\frac{{x}}{\mathrm{2}}} \left[+\mathrm{3}\left\{\mathrm{2}{x}^{\mathrm{2}} {e}^{\frac{{x}}{\mathrm{2}}} \:−\mathrm{2}\left(\mathrm{2}{xe}^{\frac{{x}}{\mathrm{2}}} −\mathrm{4}{e}^{\frac{{x}}{\mathrm{2}}} \right)\right\}\right. \\ $$$$+\frac{\mathrm{11}}{\mathrm{2}}\left\{\mathrm{2}{xe}^{\frac{{x}}{\mathrm{2}}} −\mathrm{4}{e}^{\frac{{x}}{\mathrm{2}}} \right\}\:+\mathrm{4}\left\{\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \right\}\:+{c} \\ $$$${y}\:={K}\left({x}\right){e}^{−\frac{{x}}{\mathrm{2}}} \:\Rightarrow{y}\left({x}\right)\:=… \\ $$
Commented by mathmax by abdo last updated on 05/Aug/19
$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} {y}^{'} \:+\mathrm{3}{xy}\:={x}^{\mathrm{3}} \:+\mathrm{2}{x}^{\mathrm{2}} \:\Rightarrow{xy}^{'} \:+\mathrm{3}{y}\:\:={x}^{\mathrm{2}} \:+\mathrm{2}{x}\:\left({e}\right) \\ $$$$\left({he}\right)\:\Rightarrow{xy}^{'} \:+\mathrm{3}{y}\:=\mathrm{0}\:\Rightarrow{xy}^{'} \:=−\mathrm{3}{y}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=\frac{−\mathrm{3}}{{x}}\:\Rightarrow{ln}\mid{y}\mid\:=−\mathrm{3}{ln}\mid{x}\mid+\lambda\:\Rightarrow \\ $$$$\left.{y}\left({x}\right)\:=\frac{{k}}{\mid{x}\mid^{\mathrm{3}} }\:\:\:\:{let}\:{find}\:{the}\:{solution}\:{on}\:\right]\mathrm{0},+\infty\left[\:\Rightarrow{y}\left({x}\right)=\frac{{k}}{{x}^{\mathrm{3}} }\right. \\ $$$${mvc}\:{method}\:\rightarrow{y}^{'} =\frac{{k}^{'} }{{x}^{\mathrm{3}} }\:+{k}\left(−\mathrm{3}\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{6}} }\right)=\frac{{k}^{'} }{{x}^{\mathrm{3}} }−\frac{\mathrm{3}{k}}{{x}^{\mathrm{4}} } \\ $$$$ \\ $$$$\left({e}\right)\:\Rightarrow\frac{{k}^{'} }{{x}^{\mathrm{2}} }−\frac{\mathrm{3}{k}}{{x}^{\mathrm{3}} }\:+\frac{\mathrm{3}{k}}{{x}^{\mathrm{3}} }\:={x}^{\mathrm{2}} \:+\mathrm{2}{x}\:\Rightarrow{k}^{'} \:={x}^{\mathrm{4}} \:+\mathrm{3}{x}^{\mathrm{3}} \:\Rightarrow{k}\left({x}\right)=\int\left({x}^{\mathrm{4}} \:+\mathrm{3}{x}^{\mathrm{3}} \right){dx}\:+{c} \\ $$$$\Rightarrow{k}\left({x}\right)\:=\frac{{x}^{\mathrm{5}} }{\mathrm{5}}\:+\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{4}} \:+{c}\:\Rightarrow{y}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\left\{\frac{{x}^{\mathrm{5}} }{\mathrm{5}}\:+\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{4}} \:+{c}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}{x}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}{x}\:+\frac{{c}}{{x}^{\mathrm{3}} }\:. \\ $$
Commented by mathmax by abdo last updated on 05/Aug/19
$${xy}^{'} −{y}\:={cos}\left(\mathrm{4}{x}\right) \\ $$$$\left({he}\right)\:\Rightarrow{xy}^{'} −{y}\:=\mathrm{0}\:\Rightarrow{xy}^{'} \:={y}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=\frac{\mathrm{1}}{{x}}\:\Rightarrow{ln}\mid{y}\mid\:={ln}\mid{x}\mid\:+\lambda\:\Rightarrow \\ $$$$\left.{y}\:={k}\:\mid{x}\mid\:\:\:{let}\:{find}\:{the}\:{solution}\:{on}\:\right]\mathrm{0},+\infty\left[\:\Rightarrow{y}\:={kx}\right. \\ $$$$\Rightarrow{y}^{'} ={k}^{'} {x}\:+{k} \\ $$$$\left({e}\right)\:\Rightarrow{k}^{'} {x}^{\mathrm{2}} \:+{kx}−{kx}\:={cos}\left(\mathrm{4}{x}\right)\:\Rightarrow{k}^{'} {x}^{\mathrm{2}} \:={cos}\left(\mathrm{4}{x}\right)\:\Rightarrow \\ $$$${k}^{'} \:=\frac{{cos}\left(\mathrm{4}{x}\right)}{{x}^{\mathrm{2}} }\:\Rightarrow{k}\left({x}\right)\:=\int\:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{x}^{\mathrm{2}} }{dx}\:+{c}\:\:{by}\:{parts} \\ $$$$\int\:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{x}^{\mathrm{2}} }{dx}\:=−\frac{\mathrm{1}}{{x}}{cos}\left(\mathrm{4}{x}\right)−\int\:\left(\frac{\mathrm{1}}{{x}}\right)\mathrm{4}{sin}\left(\mathrm{4}{x}\right){dx} \\ $$$$=−\frac{{cos}\left(\mathrm{4}{x}\right)}{{x}}−\mathrm{4}\:\int\:\frac{{sin}\left(\mathrm{4}{x}\right)}{{x}}{dx}\:\Rightarrow{k}\left({x}\right)\:=−\frac{{cos}\left(\mathrm{4}{x}\right)}{{x}}−\mathrm{4}\int\:\frac{{sin}\left(\mathrm{4}{x}\right)}{{x}}{dx}\:+{c} \\ $$$$\Rightarrow{y}\left({x}\right)\:=−{cos}\left(\mathrm{4}{x}\right)\:−\mathrm{4}{x}\:\int^{{x}} \:\frac{{sin}\left(\mathrm{4}{t}\right)}{{t}}{dt}\:+{cx}\: \\ $$