Menu Close

Question-6593




Question Number 6593 by Tawakalitu. last updated on 04/Jul/16
Commented by Yozzii last updated on 05/Jul/16
Given that p is prime and p≤100,  show that there are solutions (x,y),   x,y∈Z, for which y^(37) ≡x^3 +37 (mod p).  −−−−−−−−−−−−−−−−−−−−−−−  An attempt... (probably misunderstood problem)  ⇒∃r∈Z^≥  for p∈[2,100] with y^(37) −rp=x^3 +37  and y,x∈Z.  ∴ r=((y^(37) −x^3 −37)/p). r≥0 ∴ y^(37) ≥x^3 +37  y^(37) ≥x^3 +27+10  y^(37) ≥(x+3)(x^2 −3x+9)+10 and there  are integers x,y satisfying this inequality.  r=((y^(37) −(x+3)(x^2 −3x+9)−10)/p)  Suppose p=2.   ∴ r=((y^(37) −(x^3 +1))/2)−18.  If x is even then x^3 +1 is odd.  So, for r∈Z^≥ , y^(37)  must be odd so that  y^(37) −x^3 −1 is even or ∃k∈Z where   y^(37) −x^3 −1=2k⇒r=k−15∈Z.  If x is odd then y is even. In both cases  even or odd integers x or y can be found accordingly.  −     −     −    −    −    −    −    −    −    −   All other primes are odd after p=2.  r=((y^(37) −(x^3 +1))/p)−18  continue...
Giventhatpisprimeandp100,showthattherearesolutions(x,y),x,yZ,forwhichy37x3+37(modp).Anattempt(probablymisunderstoodproblem)rZforp[2,100]withy37rp=x3+37andy,xZ.r=y37x337p.r0y37x3+37y37x3+27+10y37(x+3)(x23x+9)+10andthereareintegersx,ysatisfyingthisinequality.r=y37(x+3)(x23x+9)10pSupposep=2.r=y37(x3+1)218.Ifxiseventhenx3+1isodd.So,forrZ,y37mustbeoddsothaty37x31isevenorkZwherey37x31=2kr=k15Z.Ifxisoddthenyiseven.Inbothcasesevenoroddintegersxorycanbefoundaccordingly.Allotherprimesareoddafterp=2.r=y37(x3+1)p18continue
Commented by prakash jain last updated on 05/Jul/16
y^(37) ≡x^3 +37 (mod p)  Since the question is a for limited set of  number i am just listing a solution.  case p≤37     p=2     37≡1 mod 2 ⇒x=0 y=1     p=3     37≡1 mod 3⇒x=0 y=1     p=5     37≡2 mod 5⇒x=−1 y=1     p=7     37≡2 mod 7⇒x=−1 y=1     p=11   37≡−7 mod 11⇒x=2 y=1     p=13    37≡−2 mod 13⇒x=1 y=1     p=17    37≡3 mod 17⇒Solve y^5 =x^3 +3(mod 17)     p=19    37≡−1 mod 19⇒x=1,y=0     p=23   37≡−9 mod 23⇒x=2,y=−1     p=29   37≡8 mod 29⇒x=−2,y=0     p=31  37≡6 mod 31⇒Solve y^7 =x^3 +6(mod 31)     p≡37  37≡0 mod 37⇒x=0,y=0
y37x3+37(modp)Sincethequestionisaforlimitedsetofnumberiamjustlistingasolution.casep37p=2371mod2x=0y=1p=3371mod3x=0y=1p=5372mod5x=1y=1p=7372mod7x=1y=1p=11377mod11x=2y=1p=13372mod13x=1y=1p=17373mod17Solvey5=x3+3(mod17)p=19371mod19x=1,y=0p=23379mod23x=2,y=1p=29378mod29x=2,y=0p=31376mod31Solvey7=x3+6(mod31)p37370mod37x=0,y=0

Leave a Reply

Your email address will not be published. Required fields are marked *