Question-6593 Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 6593 by Tawakalitu. last updated on 04/Jul/16 Commented by Yozzii last updated on 05/Jul/16 Giventhatpisprimeandp⩽100,showthattherearesolutions(x,y),x,y∈Z,forwhichy37≡x3+37(modp).−−−−−−−−−−−−−−−−−−−−−−−Anattempt…(probablymisunderstoodproblem)⇒∃r∈Z⩾forp∈[2,100]withy37−rp=x3+37andy,x∈Z.∴r=y37−x3−37p.r⩾0∴y37⩾x3+37y37⩾x3+27+10y37⩾(x+3)(x2−3x+9)+10andthereareintegersx,ysatisfyingthisinequality.r=y37−(x+3)(x2−3x+9)−10pSupposep=2.∴r=y37−(x3+1)2−18.Ifxiseventhenx3+1isodd.So,forr∈Z⩾,y37mustbeoddsothaty37−x3−1isevenor∃k∈Zwherey37−x3−1=2k⇒r=k−15∈Z.Ifxisoddthenyiseven.Inbothcasesevenoroddintegersxorycanbefoundaccordingly.−−−−−−−−−−Allotherprimesareoddafterp=2.r=y37−(x3+1)p−18continue… Commented by prakash jain last updated on 05/Jul/16 y37≡x3+37(modp)Sincethequestionisaforlimitedsetofnumberiamjustlistingasolution.casep⩽37p=237≡1mod2⇒x=0y=1p=337≡1mod3⇒x=0y=1p=537≡2mod5⇒x=−1y=1p=737≡2mod7⇒x=−1y=1p=1137≡−7mod11⇒x=2y=1p=1337≡−2mod13⇒x=1y=1p=1737≡3mod17⇒Solvey5=x3+3(mod17)p=1937≡−1mod19⇒x=1,y=0p=2337≡−9mod23⇒x=2,y=−1p=2937≡8mod29⇒x=−2,y=0p=3137≡6mod31⇒Solvey7=x3+6(mod31)p≡3737≡0mod37⇒x=0,y=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-72124Next Next post: y-log-2-x-5-4-find-dy-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.