Question Number 66404 by ~ À ® @ 237 ~ last updated on 14/Aug/19
Commented by mathmax by abdo last updated on 14/Aug/19
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} {dx}\:\:\:\:{changement}\:\frac{{x}}{{a}}={t}\:\:\:\:\:\:\:\:\:\:\left({a}>\mathrm{0}\right)\:{give} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\left({at}\right)^{\mathrm{2}{n}} \:{e}^{−{t}^{\mathrm{2}} } \left({adt}\right)\:={a}^{\mathrm{2}{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:=_{{t}=\sqrt{{u}}} \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}} \:{e}^{−{u}} \:\frac{{du}}{\mathrm{2}\sqrt{{u}}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{u}} {du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{u}} \:{du}\:=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Rightarrow{I}_{{n}} =\frac{{a}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}}\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${let}\:{W}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}{n}} {e}^{−{t}^{\mathrm{2}} } {dt}\:\:\:\:{by}\:{parts}\:\:{u}^{'} ={t}^{\mathrm{2}{n}} \:{and}\:{v}={e}^{−{t}^{\mathrm{2}} } \\ $$$${W}_{{n}} =\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{t}^{\mathrm{2}{n}+\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\infty} \:−\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\left(−\mathrm{2}{t}\right){e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}\left({n}+\mathrm{1}\right)} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\:{W}_{{n}+\mathrm{1}} \:\Rightarrow{W}_{{n}+\mathrm{1}} =\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}{W}_{{n}} \:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{W}_{{k}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{W}_{{n}} \:\Rightarrow \\ $$$${W}_{\mathrm{1}} .{W}_{\mathrm{2}} …..{W}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\mathrm{1}.\mathrm{3}.\mathrm{5}…..\left(\mathrm{2}{n}−\mathrm{1}\right){W}_{\mathrm{0}} .{W}_{\mathrm{1}} ….{W}_{{n}−\mathrm{1}} \:\Rightarrow\right. \\ $$$${W}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}.\mathrm{6}……\left(\mathrm{2}{n}\right)}{\mathrm{2}.\mathrm{4}……\left(\mathrm{2}{n}\right)}\right){W}_{\mathrm{0}} =\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} {n}!}\frac{\sqrt{\pi}}{\mathrm{2}}\:=\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!}\:\Rightarrow \\ $$$${I}_{{n}} ={a}^{\mathrm{2}{n}+\mathrm{1}} \:\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!}\:=\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \:\frac{\left(\mathrm{2}{n}\right)!}{{n}!}\:\sqrt{\pi} \\ $$$${also}\:{we}\:{get}\:\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}{W}_{{n}} =\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}{n}} }\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!} \\ $$
Commented by ~ À ® @ 237 ~ last updated on 14/Aug/19
$${Thank}\:{you}\:{sir} \\ $$
Commented by mathmax by abdo last updated on 14/Aug/19
$${you}\:{are}\:{welcome}. \\ $$