Menu Close

Question-66627




Question Number 66627 by behi83417@gmail.com last updated on 17/Aug/19
Commented by behi83417@gmail.com last updated on 17/Aug/19
reposted!  Q#62227
You can't use 'macro parameter character #' in math mode
Commented by mathmax by abdo last updated on 18/Aug/19
1) let I =∫(√(1+x+x^2  +x^3 ))dx ⇒I =∫ (√(1+x +x^2 (1+x)))dx  =∫(√((1+x)(1+x^2 )))dx=∫(√(1+x))(√(1+x^2 ))dx  changement (√(1+x))=t  give 1+x =t^2  ⇒x =t^2 −1 ⇒I =∫t(√(1+(t^2 −1)^2 ))(2t)dt  =2 ∫ t^2 (√(1+(t^2 −1)^2 ))dt    let t^2 −1 =sh(u) ⇒t^2  =1+sh(u) ⇒  2tdt =ch du ⇒I =∫ (√(1+sh(u)))ch(u)ch(u)du  =∫  ch^2 (u)(√(1+sh(u)))du =∫ ch(u)ch(u)(1+sh(u)^(1/2)  du  by parts f=chu and g^′ =ch(u)(1+sh(u))^(1/2)   ⇒g=(2/3)(1+sh(u))^(3/2)   ⇒ I =(2/3)ch(u)(1+sh(u))^(3/2)  −(2/3)∫  sh(u)(1+sh(u))^(3/2)  du  ....be continued...
1)letI=1+x+x2+x3dxI=1+x+x2(1+x)dx=(1+x)(1+x2)dx=1+x1+x2dxchangement1+x=tgive1+x=t2x=t21I=t1+(t21)2(2t)dt=2t21+(t21)2dtlett21=sh(u)t2=1+sh(u)2tdt=chduI=1+sh(u)ch(u)ch(u)du=ch2(u)1+sh(u)du=ch(u)ch(u)(1+sh(u)12dubypartsf=chuandg=ch(u)(1+sh(u))12g=23(1+sh(u))32I=23ch(u)(1+sh(u))3223sh(u)(1+sh(u))32du.becontinued
Commented by Tanmay chaudhury last updated on 18/Aug/19
challenging intregal...
challengingintregal
Commented by Tanmay chaudhury last updated on 18/Aug/19
sir Behi pls upload the solution...if available  these problems snatched our sleep..
sirBehiplsuploadthesolutionifavailabletheseproblemssnatchedoursleep..
Answered by mind is power last updated on 18/Aug/19
the first can′t be expressed usual function eleptic integral
thefirstcantbeexpressedusualfunctionelepticintegral

Leave a Reply

Your email address will not be published. Required fields are marked *